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ABSTRACT

A parametric quantile-quantile transformation isedsto correct the
systematic errors of precipitation projected byiceml climate models.
For this purpose, we used two new probability dsttions: modified
versions of the Gumbel and Log-Logistic distribngpwhich fit to the
precipitation of both wet and dry days. With thdsels, the daily
probability distribution of 7 regional climate mdde (RCM) was
corrected: Aladin-ARPEGE, CLM-HadCM3QO0, HIRHAM-Had8QO0,
HIRHAM-BCM, RECMO-ECHAM5-rt3, REMO-ECHAM-rt3 and
PROMES-HadCM3QO0. The implemented method presen¢sranless
than 5% on the simulation of the average preciptatand 1% on the
simulation of the number of dry days. For the stuahga, an
intensification of daily and subdaily precipitatiam expected under the
Al1B scenario, throughout the 21st century. Thisensification is
interpreted as a consequence of the process ofitenegheanisation’ of
the most southern ocean climate.

Key words: Probabilistic correction, Bias correction, Empaticdownscaling,
Transfer functions, Precipitation, Model OutputtiStacs

1. Introduction

Water is the most important natural resource folstmtmuman activities such as
agriculture and industry. But sometimes, the unbvdistribution of water can also
result in a risk of flooding events that may affdo urban environment and socio-
economic activities (Olcina 2008). Accordingly, teeudy of precipitation in the
context of climate change is critical for a lanaydanning and economic activities.
In order to analyse the potential climate changes in precipitationimegy

numerical models try to simulate the climatic caiotis of the global atmospheric
circulation. Regional Climate Models (RCM) showsaatages for some regions of
world, especially with little sharp relief. Howeyedor hilly areas, a low spatial
resolution causes a weak correspondence betweeclith&e simulated for each
grid point and the observed one in the stationatlst at subgrid scales. Hence,
greater regionalization procedures is needed fptuca the climatic change signals
of the RCMs in relation to the climatic features latal level (Widmann and
Bretherton 2003Piani et al. 2010).



A way for regionalize the climate change signalhis calibration of models using
empirical data from stations. In particular, it p@ssible by using statistical
correspondence between the observed and simul&®&dr EEmpirical Cumulative
Distribution Functions). This correspondence is liggp with several variants:
guantile mapping (Déqué 2007; Formayer and Haab)20ias correction (Ines and
Hansen 2006; Piani et al. 2010), transfer functi@enestad 2010; Kallache et al.
2011), empirical-statistical downscaling (Maraun &t 2010), probabilistic
downscaling (Michelangeli et al. 2009), Model Outgtatistics (Maraun et al.
2010; Turco et al 2011), etc.

Comparing with other methods of regionalization, the prohgbi
correspondence or qualtile-mapping shows good teesulcorrect the direct output
of the RCM (Themg@ et al. 2010). However, this method can show oiterg
because the ECDF have often irregularities in thatiouity of the curve. These
irregularities may be due to natural variability @w-occurrence events or
systematic errors of the measuring instrument. mhtral contribution to the
irregularities can be smoothed for very long tineeies.

Another problem is that empirical quantile-quantile tramsfation of highest
values of precipitation has a large range of ertoraddition, they cannot be
extrapolated to longer periods of time beyond tbeia length of the reference
series (Piani et al. 2010). In this sense, it se@isthe empirical quantile-mapping
cannot be used to correct the heaviest rainfatlimate models because in general
the series of stations are much shorter.

All theseproblems can be solved in part if the quantile-piagp is applied using
mathematical functions that fit robustly to the Hkpbility distribution of
precipitation. Thus, extrapolation of extreme ppéation has a minor error because
the irregularities of ECDF are eliminated. In thise of work, some authors have
used the gamma distribution to fit to the precipotafrom wet days (Watterson and
Dix 2003; Watterson 2005; Elshamy et al. 2009; Pearal. 2010), but in this paper
we propose to use other alternatives, valid foreschmate regions.

Therefore the main objective of this work is to apply twew probability
distributions to correct the bias of different majons of RCM precipitation, of
both wet and dry days. In particular, we have agplhe bias correction for the
Basque Country (Northern Spain), for this centumder the A1B scenario.
Furthermore, this work seeks to achieve an appatgptime-structure of simulated
rainfall, which is required for hydrology applicais in this region (Mendizabal et
al. 2013).

The selectedstudy area is also climatically interesting beeath® north of the
Iberian Peninsula lies in a borderland betweerd#wrease (south) and the increase
in rainfall (north), according to most climate grcfions for the twenty-first century
(Christensen et al. 2007, Goubanova and Li 2007@. &xpansion of the Hadley cell
could push the tropical subsidence zone (deseasaup into the southern peninsula
(Lu et al. 2007). At the same time, it is expedteat air warming will facilitate an
increase in precipitable water content in North&uarope, causing a greater
intensity of rainfall (Déqué et al. 2007, Goubanawa Li 2007).

2. Materials

2.1. Study area

The Basque Country (Northern Spain) is geograplyiceharacterised by an
important mountainous relief (Figure 1a). The calaslief can reach locally up to
1,000 m, and it is responsible for the formatioraatugged coastline, with vertical
cliffs intercalated by small estuaries. Thus, tivers draining to the Basque coast



are torrential, with very short time-lags betwekea precipitation and resulting river
discharge (Uriarte et al. 2004).

The BasqueCountry is characterised primarily by an Atlantionate, over in
the remainder of the Northern Iberian Peninsulae Bw its location, this area is
predominantly affected by the polar jet waves os$by waves, but sometimes also
by the subtropical jet (Alves and Verdiere 19992 et al. 2002). The orographic
features of this region cause a sharp contrastdsgtwhe northern and southern
rainfall (Garmendia et al. 1989). In fact, annuaqipitation ranges from 400 mm in
the south of Alava, with Mediterranean climate (MaVide 2004), and 2500 mm
in the northeast of Guipuzcoa, with oceanic clin{@&apel-Molina 2000).

2.2. Data

The data of 67 stations of State Meteorological mayeof Spain (AEMET) have
been used with daily availability (Fig. 1a). Howevenany stations present data
gaps for a few years. Stations show an averag8&%fdf gaps respect to each series
length. For the reference period 1961-2000 onlysthtions have full series, while
the total data of 67 stations is just over 70% cara@ to the maximum possible
dataset. Therefore, it was necessary to use a @f@sence series of precipitation in
the Basque Country, spatially reconstructed usindjgital terrain model and a
multi-linear fit (Moncho et al. 2009b).

The models used in this study are the numericglusitof 7 RCMs, available
from the European project ENSEMBLES-rt3 (http:/Emblesrt3.dmi.dk/). These
models have a daily temporal resolution and spagisdblution of 25 km x 25 km,
and are forced with the SRES-A1B future scenariorresponding to an
intermediate stage between different projectionsinacfeased greenhouse gases
(Christensen et al. 2007, Meehl et al. 2007, Nistedret al. 2008). The used RCMs
were:

a) Aladin-ARPEGE: National Center for MeteorolaicStudies (CNRM),
France.

b) CLM-HadCM3QO0: Swiss Institute of Technology, Rement of Geography
(ETHZ), Switzerland.

c¢) HIRHAM-HadCM3QO0: Norwegian Meteorological Instie (METNO).

d) HIRHAM-BCM: Norwegian Meteorological InstitutdETNO).

f) RECMO-ECHAMb5-rt3: Meteorological Institute NetHands (KNMI).

g) REMO-ECHAM-rt3; Max-Planck Institute (MPI), Geamy.

h) PROMES-HadCM3QO0: University of Castilla—La MaaquCLM), Spain.

All RCM outputs provided time-series until 2100 ept PROMES-
HadCM3QO0, whose projection ends in 2040. The togmolgy of a small region like
the Basque Country is highly smoothed in the RCHMg.(1b): For example, the
highest peak considered in the grid is around 808ampared with almost 1600 m
of Aitxuri Mt. (Guiplzcoa). However, it is expectéuat climate change signals be
reflected somehow in the change of precipitatiosbpbility distribution, both for
each grid point and the spatial average of theietiudrea. Irparticular we use the
average of the grid points corresponding primatdythe Basque Country (18
ground points).

3. Methodology
3.1. Probability distribution functions

The cumulative probability7p>P) is defined as the probability that a station
records an event with rainfghl equal to or greater thadin one day, i.e, it is the
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cumulative frequency with which it happens. Theinetperiod or the expected time
of this event is given by the inverse of the curtiuéaprobability, 1/4p>P).

In order to model the Cumulative Distribution Fuant (CDF) of daily
precipitation, we used a modified version of Gumbistribution and another of
Log-Logistic (Moncho et al. 2012), respectly:

7M(A4= A) = exg-explA" +k| 1)
1
ﬂ(A O2 /]) - 1+ /1w+/1"ve'k (2)

wherew and k are fitting parameters] is the relative precipitation, which also
depends on two fitting parameters: location paramél,, which represents the
most probable precipitatipand the other one is the scale parameé¥er,
P-P
A= ° 3
P (3)

The most likely value for each parameter was esdchhy statistical inference,
in particular with the Profile Log-Likelihood (Akiee 1975, Raue et al. 2009). A
standardisation was performed by correspondencevebat the values of
precipitation and its cumulative probability (CDRJonsequently, time-series of
daily precipitation can be transformed in a timdeseof return period, where each
of these return periods is associated with oneevalii daily precipitation. The
resulting time-series will be called Series of RetuPeriods or SRP. Partial
standardisation is defined as the process of gengra SRP by fitting a CDF to a
portion of the total length of the series (for exden a reference time-period).

In order to measure the goodness-of-fit for theegainand extreme values, both
fitted functions (Eqg.1 and 2) are tested using hwaparametric tests: Kolmogorov-
Smirnov test (KS, Marsaglia et al. 2003, Sekhon02Gind Anderson-Darling test
(AD, Scholz and 1987), which is most sensitiveh tails. Fits with p-values lower
than 0.05 are rejected.

3.2. Gap-filling and probabilistic correction

A great length of observed time-series is requicecompare them climatically with
the simulated ones by the models. Therefore, diapgfiand extension of observed
time-series are necessary for a good performandkeobias correction. The same
approach of probabilistic transformation is usedioth the gap-filling and the bias
correction. It is a parametric quantile-mapping moet i.e., it consists in
transferring the shape of one CDF to another (Rade2010, Kallache et al. 2011).

A generic two-step algorithm is used for both phmlistic transformations. The
first step is to obtain the SRP of each time-sarg@sg partial standardisation in the
common period between the ‘emitter series’ (whi@nsfers the CDF shape) and
the ‘receptive series’ (which receives it). For gap-filling, the ‘emitter series’ are
the shortest observed ones (less than 40 yearsjhantleceptive series’ are the
longest observed series (at least 40 years). Ferptiobability correction, the
‘emitter series’ are the extended observed timeseand the ‘receptive series’ are
the time-series simulated by the models. Each SRibtained using the theoretical
probability distribution (Eg. 1 or 2) that obtaindte lowest error for each fit. In
particular, the goodness-of-fit is given by the me@rmalized absolute error
(MNAE), calculated over all values of each CDF.

The second step consists in transferring climaa&ufes of each ‘emitter series’
to the SRP of each ‘receptive series”, applyingghemeters fitted to the CDF of
the ‘emitter series’ (inverse standardisation).thie gap-filling process, for each
‘emitter SRP’, the most similar ‘receptive SRP’ selected according to two
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statistical criteria: the Pearson correlation (Rd @ahe MNAE. Specifically, we

chose the lowest value of (1-R)-MNAE. If the bestcéptive SRP’ has a MNAE
higher than 20%, the ‘emitter series’ cannotsibecessfully extended. Then, it is
rejected for the climate analysis of time varidpil{daily scale) but not for the

analysis of climate averages.

3.3. Analysis of mean and extreme precipitation

The corrected time-series of the climate models amalysed to validate the
simulated number of precipitation days and the maath standard deviation of
precipitation. The statistical criteria used foe thalidation are the relative mean
absolute error (RMAE), the relative bias (RBIASHahe Pearson correlation (R) of
the spatial distribution. The relative change irqgipitation is obtained with a
weighted average of the seven corrected RCM piiojextWeights are defined as:

W = (RMAE? + RBIAS® +(1-R ) "
I 7
S (RMAE? +RBIAS® +(1-R )
i=1
wherew; is the weight for thei* RCM projection. The relative absolute error oé th
ensemble average is estimated by the same equbksimg this value, confidence
intervals are obtained for the projected changeverage precipitation.

Expected precipitation for a return period of 1@ang is obtained with the best
fitted curve (Eq.1 or Eq. 2), i.e, the curve thbtaoned the lowest MNAE in the fit
to ECDF of each station. Change projected in thgyd@turn precipitation for the
beginning of this century (2001-2040) comparinghwihe past (1961-2000) is
calculated using the same method of ensemble awdiey we have described
above (Eq. 4).

In order to analyse the performance of the simdldtme-structure of the
precipitation, properties of wet spells are studsgdusing the method of index
(Moncho et al. 2009a). Given a probabilistic models possible to estimate the
expected rainfall using a function of return perid¢l). Hence, the expected
precipitationP andP,, for duration oft andt, respectively, can be described by a
generic curve of Intensity-Duration-Frequency (IDF)

1-n
P < [t
P f(T,To)(t j (5)

(]

wheref(T, To) is a function of two return period¥ andT,) which depends on the
chosen probabilistic distribution (inverse of Eq.od 2), andn is the index of
precipitation. This index was estimated for alltistas and simulations from the
precipitation of at least 3 days. This tool waalsed to evaluate the simulation
time of heavy precipitation events (exceeded 50 immne day, in at least three
consecutive rainy days). Finally, we studied thesgde changes in the IDF along
the 21st century, in terms of thendex and the length of wet spells.

All data and result treatments were carried outubing statistical packages
based on R language (R Development Core Team, 20d@nly “stats” and
“fields” (Furrer 2012).

4. Reaults

4.1. Extension and gap-filling

The process of extension and gap-filling is sudcigscompleted in 34 time-series
shorter than 40 years. Time-series length was dgtkbetween 3 and 64% (mean
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of 21%) to complete the 40-year reference peri@b112000). It was found that the
Pearson correlation between each observed serniethammost similar one ranged
from a minimum of 0.61 to a maximum of 0.90, and thean is 0.74. The mean
normalised absolute error (MNAE) of the simulatedCE was between 0.02 and
0.12 (with mean 0.05) compared with the observe®EQGn 72% of the cases, the
best fitted curve was the generalised version efidlg-logistic distribution (Fig. 2).

Therefore, the seven RCMs were transformed to sitauhe daily precipitation of
the 45 rain gauges with at least 40 years of dbtafll series and 34 extended
series).

4.2. Validation of probabilistic transformation

If the monthly average and the daily deviation @ficle simulated series are
compared with the corresponding observed seriesgritbe noted that the relative
value of mean absolute error (RMAE) of both is galtg between 1 and 15%
depending on the season and RCM (Fig. 3). The geevalue of RMAE for all
stations simulated falls below 5% in all cases ana@ll months, except for the
Aladin-ARPEGE for the summer months (which hasrage error around 10%).
Similar result is obtained for the relative bia®(RS) which is also less than 5% in
most cases, except for Aladin-ARPEGE model. Theuted number of dry days
even has a lower relative error, around 1%, anegéigible mean bias (Fig. 4).

In addition to low relative error of global resuyltthe simulated spatial
variability of precipitation average has a high retation with observed
precipitation average. For example, the correlatibmonthly average is around R
= 0.99 for all models, with a slope ranging betwé&edb and 1.14 depending on the
model (Table 1). The correlation is slightly lowfer the simulation of the daily
deviation and number of days without precipitatisith R® values ranging between
0.96 and 0.98, and the slope is closer to 1, betWe2s and 1.02.

4.3. Analysis of changes in mean precipitation exitleme

According to the seven RCMs studied, the mean atinfay have a slight decrease
in the Basque Country, especially in spring. Paldig/, it provides a possible
decrease of up to 15% in the south of the Basqumi@g for the quarter April-June
of 2001-2040 with respect to period 1961-2000.utumn, the average rainfall may
decrease up to 10% in the north. However, the pevalf these projections is
considerably less than 0.95. For the period 20B026he projected decrease in
precipitation in the south in spring ranges betweddn and 30% with 95%
confidence. No significant changes are projectedheyensemble analysis for the
mean precipitation of the rest of seasons.

Regarding to the daily precipitation, return level®re analysed for the
observed and simulated time-series. In most ofs;dsest fits were obtained by the
modified log-logistic distribution (Fig. 5). In oed to analyse possible changes in
extreme precipitation, the study focused on therneperiod of 100 years. For the
period 2041-2080, the results show an increadedrntense precipitation of around
30% in most stations and models (Fig. 6). For o 2001-2040, the variation is
not clear, although some western stations in treg8a Country show an increase in
extreme precipitation for most of the models stddia particular, there is an area
in the Western Basque Country with a projected ghaof up to 30%, with an
interval of more than 99% (Fig. 7). However, thelability of change is expected
to be smaller, since the latter relative errori%olin the interpolation.

Concerning the indewr, it was studied the empirical probability distriloun for
all precipitation and for precipitation that excedd50 mm in one day (Fig. 8).
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Regarding all precipitation, no significant change=re identified. This is because
the type of precipitation is so diverse that it ksagny change in the indexat least
for the periods studied in the Basque Country. Harefor precipitation higher
than 50 mm in one day, changes in probability afeinn are observed (interval
between 0.6 and 0.8). In particular, these chamgply an increase of +0.03 = 0.01
in the average oh (from 0.57 to 0.60). Thus, increasing of the maximdaily
precipitation (Fig. 7 and 8) is consistent withraajer concentration in the time of
rainfalls, for both daily and subdaily scales (douéigher index).

5. Discussion

5.1. Choice of methodology

According to Them@ et al. (2010), quantile-mapping shows the bestopmance
comparing with other six methods of empirical-sttatal downscaling and error
correction. Quantile-quantile transformation candmepirical or parametric using
theoretical transfer functions (Déqué 2007; Pidnale 2010; Maraun et al. 2010;
Turco et al 2011). However, the commonly used poditya distributions do not fit
appropriately to very low and very high precipibatiat the same time (Begueria
2005, Moncho et al. 2012). For this reason, sontkoasl apply transfer functions
only for extreme precipitation (Fowler et al 20K&llache et al. 2011), and others
apply only for wet days (Ines and Hansen 2006, iP&énal. 2010). We used
theoretical curves fitted to the entire precipaatiCDF, not only from wet days, and
good performance is obtained (Fig 3, 4 and 5). Widshbased on transfer functions
present an advantage over empirical quantile-mgppifhey can incorporate
additional irregularities in the probability cunaé the corrected CDF of models
(overfitting). In addition, theoretical curves caasily be extended to estimate the
extreme rainfall, whereas empirical curves canHolever, there are two possible
problems in the use of theoretical fits: seasoyailitd stationarity.

Seasonality concerns about the difference in tlodalility of precipitation
depending on the season, month or even fortnighis iheans that a probability
distribution for each season (or lower scales) sdedbe fitted so that the time
series of return periods (SRP) is completely nasseal (no autocorrelation). One
of the problems is that we have to decide wheredwehe cuts to separate the
seasonal effect in the probability distributions.this work, we have chosen the
calendar month because twelve sections are coesgli@giough for the resulting SRP
to be non-seasonal (Elshamy et al. 2009). In amditihe borders of the cuts are
smooth enough, i.e. there is not much differendsvéen the probability of one
month and the next one (maybe except July).

Stationarity is related to the fact that the engpirirelationships in past
variables may be non-stationary in the future. T$8sie does not affect significantly
the probabilistic transformation method for twoseas:

1) When a time series is partially standardisetu(e with past), we obtain an SRP
which contains all the signal of climate changedose, in this way, the change
of frequency of specific return periods can be ysed: If the intensity of
precipitation increases/decreases in the future,in@nease/decrease in the
frequency of events with a high return period candbserved in the SRP.
Therefore, when the CDF parameters (fitted to edadervatory) are applied to
the SRP of an RCM, it results an automatic (pos¥ibhange in the future
probability distributions with respect to the refece period (past).

2) Although, for example, September might seemeniiee August in the future,
this possible change is also contained in the SRMAtinuing with this example,
it would expect a higher frequency of the lowestime periods (corresponding to
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dry days) in September of the future. Then, it wlotlearly change in the SRP
from being non-seasonal in the past to present smasonal differences in the
future.

In short, it appears that the physical links betw#e probability of precipitation
and the climate change scenarios are maintained sifindardisation in the form of
SRP. This should not be confused with the preservaif the relative change (in
percentage) of rainfall before and after probatiilisorrection. In fact, the relative
change usually not retained by the non-linear fearfanctions (Benestad 2010).

Another important aspect of the standardisatiorcgss is to use precipitation
series with sufficient detail and accurate values dchieving a more flexible
processing. For example, the numerical output dfraate model precipitation has
many values below 0.1 mm, thus, it is more detaitethe probability distribution
than a meteorological station (which in generaldassolution of 0.1 mm).

Finally, note that bias correction of climate madehnnot be evaluated directly
using cross-validation, because the decadal clivat@bility simulated by RCMs
does not correspond to the observed decadal JVityaldio evaluate a statistical
downscaling method, it would be advisable to useamalysis (e.g. ERA40), where
a division in shorter time parts is possible fooss-validate (because annual and
decadal correspondence exists). Evaluations of piledabilistic correction are
performed by other authors (Ines and Hansen 20@gu® 2007; Formayer and
Haas 2010; Piani et al. 2010; Benestad 2010; TReeteal. 2010; Kallache et al.
2011).

5.2. Probabilistic transformation

The probability distributions used in this studyreveselected because they show
better results than others for several climateSgain (Moncho et al. 2012). For the
Basque Country, both distributions have a high gesd-of-fit for the daily rainfall,
with a mean error generally less than 6% (Fig.Hwever, the fitting error in
summer is higher, due to the high number of dayk Vaw precipitation, which
makes the relative error shoot up. Furthermore,udex distributions successfully
passed both the KS as AD test (p>0.05) for 50 ofté@fions at one time. So, fitted
distributions are statistically indistinguishablerh the observed distribution of
these 50 stations. A subset of 45 of these stationkl be successfully extended to
have at least 40 years of data. The remaining sienes were too short to being
able to properly pass the whole extending procesisthey were rejected for the
probabilistic correction of the RCMs.

Before the probabilistic correction, direct outpof the RCM softens
considerably the moderate and intense rainfallexchange to overestimate the
number of days with rainfall, in more than doubAdter the correction, simulated
time-series adequately resemble observed timessexig. according to the BIAS of
rainy days and the RMAE of average rainfall (Figar®l 4). Nevertheless, it does
not guarantee that probability distributions amaikir enough to say that they are
statistically indistinguishable. Therefore, KS afD tests were applied again, but
this time to evaluate simulated time-series, afpeobabilistic transformation.
Results showed that the p-value of most statiors at@ve 0.05 for both tests, and
it follows that the simulated CDFs are generallgistinguishable from observed
ones. However, nearly half of the stations obtaiaguvalue less than 0.05 in the
summer months. This can be explained by the langmber of days without
precipitation. That is, the KS and AD test givescimgonsideration to values with a
high frequency of occurrence; hence, small diffeesnin the number of dry days
cause that p-values be close to zero.



5.3. Analysis of precipitation change

One of the most sensitive aspects of the SRP melibgyl is that it keeps the
precipitation time-structure almost intact. Thatagrobabilistic transformation can
change the scale of the precipitation and the nunolbedry days, but not the
disposition of dry days alternating with wet daykerefore, it is important the fact
that the models can reproduce the observed conditibwet and dry spells.

In this regard, Figure 8 shows that regional mod®€Ms) adequately
reproduce the climatic characteristics of wet spédr the reference period 1961-
2000. In general, the projection for 2001-2040 shawo remarkable changes
compared with the reference period. However, thera slight reduction in the
length of wet spells in all quarters except for t&m This reduction, in addition to
the slight increase in the peaks in autumn projeébe some stations, implies a
slight increase in the index as shown in Figure 7.

The reduction of the wet spells length is greatesummer and autumn. In
contrast, total precipitation of wet spells decesamore clearly in summer than in
autumn, in most of stations. This happens becanssummer months, rainfall
intensity remains approximately constant (Fig. 9).

As for dry spells, the average length is adequatghulated for the reference
period (Fig. 10). However, probability distribut®wnf the length of dry spells have
certain differences compared with the observatiafteough it does not affect the
seasonal cycle. For the period 2001-2040, numeoiagluts of RCMs projected a
clear increase in the length of dry spells in gpand summer of more than 0.5 days
per period without rainfall. Note that the incred$ength of dry spells is consistent
with the slight decrease in the length of wet spptbjected for 2001-2040 (Fig. 9).

The increase in heavy precipitation in the Basqaen@y can be related to the
possible mediterraneanisation of climate (Moren@3}0The increase in the number
of dry days (Fig. 10) and the highest concentratbprecipitation in a short time
(Fig. 9) support this hypothesis. The possible teedineanisation of Basque
climate may be driven by the expansion of the Hadlel (Lu et al. 2007). The
global warming projected under the A1B scenaricseala dilation of the cell and,
consequently, the subtropical subsidence area wooke towards the North. The
main physical implications of this phenomenon ave:tl) lower precipitation in
spring due to the increased presence of anticysloBg Increased intensity of
autumn precipitation in the Mediterranean climateaadue to increased summer
warming and, hence, more water available in theogphere.

6. Conclusions

Both the modified Gumbel distribution and the gatised version of the log-
logistic distribution have a high goodness-of-dit the empirical probability of daily
precipitation in the Basque Country. In particuldwe latter theoretical distribution
showed slight better results, with a mean erro4%fcompared to 5% obtained by
Gumbel distribution. The probabilistic transfornoatiof RCM adequately corrects
the probability distribution and makes it indistinghable from the stations in the
reference period. In fact, the errors of the sitadaeries are generally less than 5%
for both average and standard deviation. The emwrdhe number of days without
precipitation is less than 1% in most cases. Maggotwhis transformation does not
directly affect the climate signal of the modelshaugh brings it in the line with the
frequency of precipitation probability of the staits. Therefore, the methodology is
useful to quantify possible changes in local cliniat terms of absolute amount of
precipitation and the way it is distributed throaghtime (e.g., dry spells, wet
spells, index).



The results of this study show that changes intithe distribution of rainfall are
expected during the 21st century and under the #ddhario. Although duration of
consecutive days with rainfall may be shortenenhfaft would be concentrated in
shorter time-periods, thus increasing the intensitthe daily maximum in autumn.
This idea is reinforced because the indeprojected for the rest of the century
shows a slight increase, from 0.57 to 0.60. Witard to highest precipitation, most
models project a clear increase. For example, pitaton with a return period of
100 years will increase to 30% in 2001-2040 comgbae 1961-2000, in the
Western Basque Country. For the period 2041-2089jricrease may exceed 40%
in most of areas. In addition to the intensificat@ precipitation, mainly in autumn,
climate models project an increase in the lengttirgfspells and a slight decrease in
summer precipitation. Therefore, these changes cameli a possible
mediterraneanisation of the Basque climate.
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TABLES

Table 1. Correlation (B and slope of the climatic values of the averaajafall,
daily deviation and dry days in the series simuldig the models, compared with

baseline stations.

Corréeation (R?) Slope
RCM roiniall_desation DY OSSN Genation DY 0ays
Aladin-ARPEGE 0.99 0.98 0.97 1.07 0.97 0.99
CLM-HadCM3Q0 0.99 0.96 0.97 1.07 0.95 1.01
HIRHAM-HadCM3QO0 0.99 0.98 0.98 1.14 1.00 0.98
HIRHAM-BCM 0.99 0.98 0.97 1.05 0.97 0.99
RACMO-ECHAMS5-rt3 0.99 0.97 0.97 1.08 0.99 1.02
REMO-ECHAMS5-rt3 0.99 0.97 0.97 1.08 1.01 0.96
PROMES-HadCM3QO0 0.99 0.97 0.96 1.11 0.97 0.96

14



Figure captions

Figure 1. a) Location of the stations used in stigly (AEMET). b) Example of

digital terrain model used in the regional climatedels of ENSEMBLES-rt3. c)

Election of interest grid points for the Basque @toy, which distinguishes between
sea points (blue) and ground points (orange).

Figure 2. Comparison of Mean Normalized AbsoluteoE(MNAE) of the two
probabilistic models used for the standardisatibthe 45 stations with at least 40
years of data.

Figure 3. Relative mean absolute error (RMAE) agldtive bias (RBIAS) of the
average and standard deviations of simulated teriess Each bar represents the set
of all stations according to each of the seven RCMs

Figure 4. Absolute and relative mean error (MAEY dnas (BIAS) of the days
without precipitation of the simulated series. Edwdr represents the set of all
stations according to each of the seven RCM.

Figure 5. Return level plots of the daily precipda for the used stations, in
according to the two fitted models: modified Gumbged) and modified

LogLogistic (blue). Dashed curves correspond to 3s#fidence intervals; points
correspond to empirical estimates excluding theimam value of each time-series.

Figure 6. Projection of the expected daily rainfall a return period of 100 years
according to the theoretical curves fitted to timeutated stations. Above shows the
projection of the absolute value for the three qusi(1961-2000, 2001-2040 and
2041-2080). Below shows the relative change forl2ZB040 and 2041-2080 and the
error of the simulation compared with observed tsages (1961-2000).

Figure 7. a) Maximum expected rainfall in one day¥961-2000 simulated with a
return period of 100 years. The values are estinatzording to the theoretical
curves fitted to the simulated stations, and theyirterpolated by using a multiple
spatial fit. b) Relative change of precipitatiorsdebed in a), for the period 2001-
2040 versus 1961-2000. The black lines representdhfidence intervals estimated
from the statistics of the seven RCMs.

Figure 8. a) Empirical probability distribution dfie indexn to the set of all the
stations in the period 1961-2000, and the rangeesponding to the seven RCM
simulations. b) Projection of change for 2001-2Cxtd 2041-2080. ¢) and d)
Respectively, the same as a) and b) but only timdathexceeded 50 mm in one
day.

Figure 9. Comparison of observed and simulated spetls for 1961-2000 and
projected for 2001-2040. Each point of the boxpégresents the climatic value of a
real or simulated station. Top left shows the agerkength of spells (days), top
right, it shows the average daily peak (in milliers). Bottom right shows the
average total rainfall (in millimeters) and loweftlcompares the mean indexof
wet spell.

Figure 10. Evolution of dry spells for the periotl2001-2040 versus the period
1961-2000, both observed and simulated: a) boxgfldhe average length of dry
spells, and b) cumulative probability of the lengthdry spells.
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@ Rain gauges

Figure 1. a) Location of the stations used in 8tigdy (AEMET). b) Example of

digital terrain model used in the regional climatedels of ENSEMBLES-rt3. c)

Election of interest grid points for the Basque @toy, which distinguishes between
sea points (blue) and ground points (orange).
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Figure 2. Comparison of Mean Normalized AbsoluteoE(MNAE) of the two
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Figure 5. Return level plots of the daily precipda for the used stations, in
according to the two fitted models: modified Gumbged) and modified

LogLogistic (blue). Dashed curves correspond to s#fidence intervals; points
correspond to empirical estimates excluding theimam value of each time-series.
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Figure 6. Projection of the expected daily rainfall a return period of 100 years
according to the theoretical curves fitted to timeutated stations. Above shows the
projection of the absolute value for the three qusi(1961-2000, 2001-2040 and
2041-2080). Below shows the relative change forl2ZB040 and 2041-2080 and the
error of the simulation compared with observed tsages (1961-2000).
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Figure 7. a) Maximum expected rainfall in one day ¥961-2000 simulated with a
return period of 100 years. The values are estunateording to the theoretical
curves fitted to the simulated stations, and theyirterpolated by using a multiple
spatial fit. b) Relative change of precipitatiorsdegbed in a), for the period 2001-
2040 versus 1961-2000. The black lines representdhfidence intervals estimated
from the statistics of the seven RCMs.
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right, it shows the average daily peak (in milliers). Bottom right shows the
average total rainfall (in millimeters) and loweftlcompares the mean indexof

wet spell.
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Figure 10. Evolution of dry spells for the periol2001-2040 versus the period
1961-2000, both observed and simulated: a) boxgfldhe average length of dry
spells, and b) cumulative probability of the lengthdry spells.
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