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ABSTRACT 

A parametric quantile-quantile transformation is used to correct the 
systematic errors of precipitation projected by regional climate models. 
For this purpose, we used two new probability distributions: modified 
versions of the Gumbel and Log-Logistic distributions, which fit to the 
precipitation of both wet and dry days. With these tools, the daily 
probability distribution of 7 regional climate models (RCM) was 
corrected: Aladin-ARPEGE, CLM-HadCM3Q0, HIRHAM-HadCM3Q0, 
HIRHAM-BCM, RECMO-ECHAM5-rt3, REMO-ECHAM-rt3 and 
PROMES-HadCM3Q0. The implemented method presents an error less 
than 5% on the simulation of the average precipitation, and 1% on the 
simulation of the number of dry days. For the study area, an 
intensification of daily and subdaily precipitation is expected under the 
A1B scenario, throughout the 21st century. This intensification is 
interpreted as a consequence of the process of ‘mediterraneanisation’ of 
the most southern ocean climate. 

Key words: Probabilistic correction, Bias correction, Empirical downscaling, 
Transfer functions, Precipitation, Model Output Statistics 
 

1. Introduction 

Water is the most important natural resource for most human activities such as 
agriculture and industry. But sometimes, the unevenly distribution of water can also 
result in a risk of flooding events that may affect the urban environment and socio-
economic activities (Olcina 2008). Accordingly, the study of precipitation in the 
context of climate change is critical for a land-use planning and economic activities. 

In order to analyse the potential climate changes in precipitation regime, 
numerical models try to simulate the climatic conditions of the global atmospheric 
circulation. Regional Climate Models (RCM) shows advantages for some regions of 
world, especially with little sharp relief. However, for hilly areas, a low spatial 
resolution causes a weak correspondence between the climate simulated for each 
grid point and the observed one in the stations located at subgrid scales. Hence, 
greater regionalization procedures is needed for capture the climatic change signals 
of the RCMs in relation to the climatic features at local level (Widmann and 
Bretherton 2003; Piani et al. 2010).  
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A way for regionalize the climate change signal is the calibration of models using 
empirical data from stations. In particular, it is possible by using statistical 
correspondence between the observed and simulated ECDF (Empirical Cumulative 
Distribution Functions). This correspondence is applied with several variants: 
quantile mapping (Déqué 2007; Formayer and Haas 2010), bias correction (Ines and 
Hansen 2006; Piani et al. 2010), transfer functions (Benestad 2010; Kallache et al. 
2011), empirical-statistical downscaling (Maraun et al. 2010), probabilistic 
downscaling (Michelangeli et al. 2009), Model Output Statistics (Maraun et al. 
2010; Turco et al 2011), etc. 

Comparing with other methods of regionalization, the probability 
correspondence or qualtile-mapping shows good results to correct the direct output 
of the RCM (Themeβl et al. 2010). However, this method can show overfitting 
because the ECDF have often irregularities in the continuity of the curve. These 
irregularities may be due to natural variability of low-occurrence events or 
systematic errors of the measuring instrument. The natural contribution to the 
irregularities can be smoothed for very long time-series.  

Another problem is that empirical quantile-quantile transformation of highest 
values of precipitation has a large range of error. In addition, they cannot be 
extrapolated to longer periods of time beyond the actual length of the reference 
series (Piani et al. 2010). In this sense, it seems that the empirical quantile-mapping 
cannot be used to correct the heaviest rainfall in climate models because in general 
the series of stations are much shorter.  

All these problems can be solved in part if the quantile-mapping is applied using 
mathematical functions that fit robustly to the probability distribution of 
precipitation. Thus, extrapolation of extreme precipitation has a minor error because 
the irregularities of ECDF are eliminated. In this line of work, some authors have 
used the gamma distribution to fit to the precipitation from wet days (Watterson and 
Dix 2003; Watterson 2005; Elshamy et al. 2009; Piani et al. 2010), but in this paper 
we propose to use other alternatives, valid for some climate regions. 

Therefore, the main objective of this work is to apply two new probability 
distributions to correct the bias of different projections of RCM precipitation, of 
both wet and dry days. In particular, we have applied the bias correction for the 
Basque Country (Northern Spain), for this century under the A1B scenario. 
Furthermore, this work seeks to achieve an appropriate time-structure of simulated 
rainfall, which is required for hydrology applications in this region (Mendizabal et 
al. 2013). 

The selected study area is also climatically interesting because the north of the 
Iberian Peninsula lies in a borderland between the decrease (south) and the increase 
in rainfall (north), according to most climate projections for the twenty-first century 
(Christensen et al. 2007, Goubanova and Li 2007). The expansion of the Hadley cell 
could push the tropical subsidence zone (desert areas) up into the southern peninsula 
(Lu et al. 2007). At the same time, it is expected that air warming will facilitate an 
increase in precipitable water content in Northern Europe, causing a greater 
intensity of rainfall (Déqué et al. 2007, Goubanova and Li 2007). 

2. Materials 

2.1. Study area 

The Basque Country (Northern Spain) is geographically characterised by an 
important mountainous relief (Figure 1a). The coastal relief can reach locally up to 
1,000 m, and it is responsible for the formation of a rugged coastline, with vertical 
cliffs intercalated by small estuaries. Thus, the rivers draining to the Basque coast 
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are torrential, with very short time-lags between the precipitation and resulting river 
discharge (Uriarte et al. 2004). 

The Basque Country is characterised primarily by an Atlantic climate, over in 
the remainder of the Northern Iberian Peninsula. Due to its location, this area is 
predominantly affected by the polar jet waves or Rossby waves, but sometimes also 
by the subtropical jet (Alves and Verdière 1999; Peliz et al. 2002). The orographic 
features of this region cause a sharp contrast between the northern and southern 
rainfall (Garmendia et al. 1989). In fact, annual precipitation ranges from 400 mm in 
the south of Alava, with Mediterranean climate (Martín-Vide 2004), and 2500 mm 
in the northeast of Guipúzcoa, with oceanic climate (Capel-Molina 2000). 

2.2. Data 

The data of 67 stations of State Meteorological Agency of Spain (AEMET) have 
been used with daily availability (Fig. 1a). However, many stations present data 
gaps for a few years. Stations show an average of 15% of gaps respect to each series 
length. For the reference period 1961-2000 only 11 stations have full series, while 
the total data of 67 stations is just over 70% compared to the maximum possible 
dataset. Therefore, it was necessary to use a cross reference series of precipitation in 
the Basque Country, spatially reconstructed using a digital terrain model and a 
multi-linear fit (Moncho et al. 2009b).  

The models used in this study are the numerical outputs of 7 RCMs, available 
from the European project ENSEMBLES-rt3 (http://ensemblesrt3.dmi.dk/). These 
models have a daily temporal resolution and spatial resolution of 25 km × 25 km, 
and are forced with the SRES-A1B future scenario, corresponding to an 
intermediate stage between different projections of increased greenhouse gases 
(Christensen et al. 2007, Meehl et al. 2007, Niehörster et al. 2008). The used RCMs 
were: 

a)  Aladin-ARPEGE: National Center for Meteorological Studies (CNRM), 
France. 

b) CLM-HadCM3Q0: Swiss Institute of Technology, Department of Geography 
(ETHZ), Switzerland.  

c) HIRHAM-HadCM3Q0: Norwegian Meteorological Institute (METNO). 
d) HIRHAM-BCM: Norwegian Meteorological Institute (METNO). 
f ) RECMO-ECHAM5-rt3: Meteorological Institute Netherlands (KNMI). 
g) REMO-ECHAM-rt3; Max-Planck Institute (MPI), Germany.  
h) PROMES-HadCM3Q0: University of Castilla–La Mancha (UCLM), Spain. 

All RCM outputs provided time-series until 2100 except PROMES-
HadCM3Q0, whose projection ends in 2040. The topography of a small region like 
the Basque Country is highly smoothed in the RCMs (Fig. 1b): For example, the 
highest peak considered in the grid is around 800 m, compared with almost 1600 m 
of Aitxuri Mt. (Guipúzcoa). However, it is expected that climate change signals be 
reflected somehow in the change of precipitation probability distribution, both for 
each grid point and the spatial average of the studied area. In particular, we use the 
average of the grid points corresponding primarily to the Basque Country (18 
ground points). 

3. Methodology 

3.1. Probability distribution functions 

The cumulative probability π(p≥P) is defined as the probability that a station 
records an event with rainfall p equal to or greater than P in one day, i.e, it is the 
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cumulative frequency with which it happens. The return period or the expected time 
of this event is given by the inverse of the cumulative probability, 1/π(p≥P).  

In order to model the Cumulative Distribution Function (CDF) of daily 
precipitation, we used a modified version of Gumbel distribution and another of 
Log-Logistic (Moncho et al. 2012), respectly:  
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where w and k are fitting parameters; λ is the relative precipitation, which also 
depends on two fitting parameters: location parameter, Po, which represents the 
most probable precipitation, and the other one is the scale parameter, P1: 
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The most likely value for each parameter was estimated by statistical inference, 
in particular with the Profile Log-Likelihood (Akaike 1975, Raue et al. 2009). A 
standardisation was performed by correspondence between the values of 
precipitation and its cumulative probability (CDF). Consequently, time-series of 
daily precipitation can be transformed in a time-series of return period, where each 
of these return periods is associated with one value of daily precipitation. The 
resulting time-series will be called Series of Return Periods or SRP. Partial 
standardisation is defined as the process of generating a SRP by fitting a CDF to a 
portion of the total length of the series (for example, a reference time-period). 

In order to measure the goodness-of-fit for the general and extreme values, both 
fitted functions (Eq.1 and 2) are tested using two nonparametric tests: Kolmogorov-
Smirnov test (KS, Marsaglia et al. 2003, Sekhon 2010) and Anderson-Darling test 
(AD, Scholz and 1987), which is most sensitive to the tails. Fits with p-values lower 
than 0.05 are rejected. 

3.2. Gap-filling and probabilistic correction  

A great length of observed time-series is required to compare them climatically with 
the simulated ones by the models. Therefore, gap-filling and extension of observed 
time-series are necessary for a good performance of the bias correction. The same 
approach of probabilistic transformation is used for both the gap-filling and the bias 
correction. It is a parametric quantile-mapping method, i.e., it consists in 
transferring the shape of one CDF to another (Benestad 2010, Kallache et al. 2011).  

A generic two-step algorithm is used for both probabilistic transformations. The 
first step is to obtain the SRP of each time-series using partial standardisation in the 
common period between the ‘emitter series’ (which transfers the CDF shape) and 
the ‘receptive series’ (which receives it). For the gap-filling, the ‘emitter series’ are 
the shortest observed ones (less than 40 years) and the ‘receptive series’ are the 
longest observed series (at least 40 years). For the probability correction, the 
‘emitter series’ are the extended observed time-series, and the ‘receptive series’ are 
the time-series simulated by the models. Each SRP is obtained using the theoretical 
probability distribution (Eq. 1 or 2) that obtained the lowest error for each fit. In 
particular, the goodness-of-fit is given by the mean normalized absolute error 
(MNAE), calculated over all values of each CDF.   

The second step consists in transferring climate features of each ‘emitter series’ 
to the SRP of each ‘receptive series”, applying the parameters fitted to the CDF of 
the ‘emitter series’ (inverse standardisation). In the gap-filling process, for each 
‘emitter SRP’, the most similar ‘receptive SRP’ is selected according to two 
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statistical criteria: the Pearson correlation (R) and the MNAE. Specifically, we 
chose the lowest value of (1-R)·MNAE. If the best ‘receptive SRP’ has a MNAE 
higher than 20%, the ‘emitter series’ cannot be successfully extended. Then, it is 
rejected for the climate analysis of time variability (daily scale) but not for the 
analysis of climate averages. 

3.3. Analysis of mean and extreme precipitation 

The corrected time-series of the climate models are analysed to validate the 
simulated number of precipitation days and the mean and standard deviation of 
precipitation. The statistical criteria used for the validation are the relative mean 
absolute error (RMAE), the relative bias (RBIAS) and the Pearson correlation (R) of 
the spatial distribution. The relative change in precipitation is obtained with a 
weighted average of the seven corrected RCM projections. Weights are defined as:  
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where wi is the weight for the ‘i’ RCM projection. The relative absolute error of the 
ensemble average is estimated by the same equation. Using this value, confidence 
intervals are obtained for the projected change in average precipitation. 

Expected precipitation for a return period of 100 years is obtained with the best 
fitted curve (Eq.1 or Eq. 2), i.e, the curve that obtained the lowest MNAE in the fit 
to ECDF of each station. Change projected in the 100y-return precipitation for the 
beginning of this century (2001-2040) comparing with the past (1961-2000) is 
calculated using the same method of ensemble average that we have described 
above (Eq. 4). 

In order to analyse the performance of the simulated time-structure of the 
precipitation, properties of wet spells are studied by using the method of index n 
(Moncho et al. 2009a). Given a probabilistic model, it is possible to estimate the 
expected rainfall using a function of return period, f(T). Hence, the expected 
precipitation P and Po, for duration of t and to respectively, can be described by a 
generic curve of Intensity-Duration-Frequency (IDF): 
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where f(T, To) is a function of two return periods (T and To) which depends on the 
chosen probabilistic distribution (inverse of Eq. 1 or 2), and n is the index of 
precipitation. This index was estimated for all stations and simulations from the 
precipitation of at least 3 days. This tool was also used to evaluate the simulation 
time of heavy precipitation events (exceeded 50 mm in one day, in at least three 
consecutive rainy days). Finally, we studied the possible changes in the IDF along 
the 21st century, in terms of the n index and the length of wet spells. 

All data and result treatments were carried out by using statistical packages 
based on R language (R Development Core Team, 2010), mainly “stats” and 
“fields” (Furrer 2012). 

4. Results 

4.1. Extension and gap-filling 
 
The process of extension and gap-filling is successfully completed in 34 time-series 
shorter than 40 years. Time-series length was extended between 3 and 64% (mean 
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of 21%) to complete the 40-year reference period (1961-2000). It was found that the 
Pearson correlation between each observed series and the most similar one ranged 
from a minimum of 0.61 to a maximum of 0.90, and the mean is 0.74. The mean 
normalised absolute error (MNAE) of the simulated ECDF was between 0.02 and 
0.12 (with mean 0.05) compared with the observed ECDF. In 72% of the cases, the 
best fitted curve was the generalised version of the log-logistic distribution (Fig. 2). 
Therefore, the seven RCMs were transformed to simulate the daily precipitation of 
the 45 rain gauges with at least 40 years of data (11 full series and 34 extended 
series).  

4.2. Validation of probabilistic transformation 
 
If the monthly average and the daily deviation of each simulated series are 
compared with the corresponding observed series, it can be noted that the relative 
value of mean absolute error (RMAE) of both is generally between 1 and 15% 
depending on the season and RCM (Fig. 3). The average value of RMAE for all 
stations simulated falls below 5% in all cases and in all months, except for the 
Aladin-ARPEGE for the summer months (which has an average error around 10%). 
Similar result is obtained for the relative bias (RBIAS) which is also less than 5% in 
most cases, except for Aladin-ARPEGE model. The simulated number of dry days 
even has a lower relative error, around 1%, and a negligible mean bias (Fig. 4). 

In addition to low relative error of global results, the simulated spatial 
variability of precipitation average has a high correlation with observed 
precipitation average. For example, the correlation of monthly average is around R2 
= 0.99 for all models, with a slope ranging between 1.05 and 1.14 depending on the 
model (Table 1). The correlation is slightly lower for the simulation of the daily 
deviation and number of days without precipitation, with R2 values ranging between 
0.96 and 0.98, and the slope is closer to 1, between 0.95 and 1.02. 

4.3. Analysis of changes in mean precipitation and extreme 
 
According to the seven RCMs studied, the mean rainfall may have a slight decrease 
in the Basque Country, especially in spring. Particulary, it provides a possible 
decrease of up to 15% in the south of the Basque Country, for the quarter April-June 
of 2001-2040 with respect to period 1961-2000. In autumn, the average rainfall may 
decrease up to 10% in the north. However, the p-value of these projections is 
considerably less than 0.95. For the period 2041-2080, the projected decrease in 
precipitation in the south in spring ranges between 10 and 30% with 95% 
confidence. No significant changes are projected by the ensemble analysis for the 
mean precipitation of the rest of seasons. 

Regarding to the daily precipitation, return levels were analysed for the 
observed and simulated time-series. In most of cases, best fits were obtained by the 
modified log-logistic distribution (Fig. 5). In order to analyse possible changes in 
extreme precipitation, the study focused on the return period of 100 years. For the 
period 2041-2080, the results show an increase in the intense precipitation of around 
30% in most stations and models (Fig. 6). For the period 2001-2040, the variation is 
not clear, although some western stations in the Basque Country show an increase in 
extreme precipitation for most of the models studied. In particular, there is an area 
in the Western Basque Country with a projected change of up to 30%, with an 
interval of more than 99% (Fig. 7). However, the probability of change is expected 
to be smaller, since the latter relative error is 15% in the interpolation. 

Concerning the index n, it was studied the empirical probability distribution for 
all precipitation and for precipitation that exceeded 50 mm in one day (Fig. 8). 
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Regarding all precipitation, no significant changes were identified. This is because 
the type of precipitation is so diverse that it masks any change in the index n, at least 
for the periods studied in the Basque Country. However, for precipitation higher 
than 50 mm in one day, changes in probability of index n are observed (interval 
between 0.6 and 0.8). In particular, these changes imply an increase of +0.03 ± 0.01 
in the average of n (from 0.57 to 0.60). Thus, increasing of the maximum daily 
precipitation (Fig. 7 and 8) is consistent with a greater concentration in the time of 
rainfalls, for both daily and subdaily scales (due to higher index n). 

5. Discussion 

5.1. Choice of methodology 

According to Themeβl et al. (2010), quantile-mapping shows the best performance 
comparing with other six methods of empirical-statistical downscaling and error 
correction. Quantile-quantile transformation can be empirical or parametric using 
theoretical transfer functions (Déqué 2007; Piani et al. 2010; Maraun et al. 2010; 
Turco et al 2011). However, the commonly used probability distributions do not fit 
appropriately to very low and very high precipitation at the same time (Begueria 
2005, Moncho et al. 2012). For this reason, some authors apply transfer functions 
only for extreme precipitation (Fowler et al 2010, Kallache et al. 2011), and others 
apply only for wet days (Ines and Hansen 2006, Piani et al. 2010). We used 
theoretical curves fitted to the entire precipitation CDF, not only from wet days, and 
good performance is obtained (Fig 3, 4 and 5). Methods based on transfer functions 
present an advantage over empirical quantile-mapping. They can incorporate 
additional irregularities in the probability curve of the corrected CDF of models 
(overfitting). In addition, theoretical curves can easily be extended to estimate the 
extreme rainfall, whereas empirical curves cannot. However, there are two possible 
problems in the use of theoretical fits: seasonality and stationarity. 

Seasonality concerns about the difference in the probability of precipitation 
depending on the season, month or even fortnight. This means that a probability 
distribution for each season (or lower scales) needs to be fitted so that the time 
series of return periods (SRP) is completely non-seasonal (no autocorrelation).  One 
of the problems is that we have to decide where we do the cuts to separate the 
seasonal effect in the probability distributions. In this work, we have chosen the 
calendar month because twelve sections are considered enough for the resulting SRP 
to be non-seasonal (Elshamy et al. 2009). In addition, the borders of the cuts are 
smooth enough, i.e. there is not much difference between the probability of one 
month and the next one (maybe except July).  

Stationarity is related to the fact that the empirical relationships in past 
variables may be non-stationary in the future. This issue does not affect significantly 
the probabilistic transformation method for two reasons:  

1)  When a time series is partially standardised (future with past), we obtain an SRP 
which contains all the signal of climate change because, in this way, the change 
of frequency of specific return periods can be analysed: If the intensity of 
precipitation increases/decreases in the future, an increase/decrease in the 
frequency of events with a high return period can be observed in the SRP. 
Therefore, when the CDF parameters (fitted to each observatory) are applied to 
the SRP of an RCM, it results an automatic (possible) change in the future 
probability distributions with respect to the reference period (past). 

2)  Although, for example, September might seem more like August in the future, 
this possible change is also contained in the SRP. Continuing with this example, 
it would expect a higher frequency of the lowest return periods (corresponding to 



 8

dry days) in September of the future. Then, it would clearly change in the SRP 
from being non-seasonal in the past to present some seasonal differences in the 
future. 

 
In short, it appears that the physical links between the probability of precipitation 
and the climate change scenarios are maintained after standardisation in the form of 
SRP. This should not be confused with the preservation of the relative change (in 
percentage) of rainfall before and after probabilistic correction. In fact, the relative 
change usually not retained by the non-linear transfer functions (Benestad 2010). 

Another important aspect of the standardisation process is to use precipitation 
series with sufficient detail and accurate values for achieving a more flexible 
processing. For example, the numerical output of a climate model precipitation has 
many values below 0.1 mm, thus, it is more detailed in the probability distribution 
than a meteorological station (which in general has a resolution of 0.1 mm).  

Finally, note that bias correction of climate models cannot be evaluated directly 
using cross-validation, because the decadal climate variability simulated by RCMs 
does not correspond to the observed decadal variability. To evaluate a statistical 
downscaling method, it would be advisable to use a reanalysis (e.g. ERA40), where 
a division in shorter time parts is possible for cross-validate (because annual and 
decadal correspondence exists). Evaluations of the probabilistic correction are 
performed by other authors (Ines and Hansen 2006; Déqué 2007; Formayer and 
Haas 2010; Piani et al. 2010; Benestad 2010; Themeβl et al. 2010; Kallache et al. 
2011). 

5.2. Probabilistic transformation 

The probability distributions used in this study were selected because they show 
better results than others for several climates in Spain (Moncho et al. 2012). For the 
Basque Country, both distributions have a high goodness-of-fit for the daily rainfall, 
with a mean error generally less than 6% (Fig. 2). However, the fitting error in 
summer is higher, due to the high number of days with low precipitation, which 
makes the relative error shoot up. Furthermore, the used distributions successfully 
passed both the KS as AD test (p>0.05) for 50 of 67 stations at one time. So, fitted 
distributions are statistically indistinguishable from the observed distribution of 
these 50 stations. A subset of 45 of these stations could be successfully extended to 
have at least 40 years of data. The remaining time-series were too short to being 
able to properly pass the whole extending process and they were rejected for the 
probabilistic correction of the RCMs.  

Before the probabilistic correction, direct output of the RCM softens 
considerably the moderate and intense rainfall, in exchange to overestimate the 
number of days with rainfall, in more than double. After the correction, simulated 
time-series adequately resemble observed time-series, e.g. according to the BIAS of 
rainy days and the RMAE of average rainfall (Fig. 3 and 4). Nevertheless, it does 
not guarantee that probability distributions are similar enough to say that they are 
statistically indistinguishable. Therefore, KS and AD tests were applied again, but 
this time to evaluate simulated time-series, after probabilistic transformation. 
Results showed that the p-value of most stations was above 0.05 for both tests, and 
it follows that the simulated CDFs are generally indistinguishable from observed 
ones. However, nearly half of the stations obtained a p-value less than 0.05 in the 
summer months. This can be explained by the large number of days without 
precipitation. That is, the KS and AD test gives much consideration to values with a 
high frequency of occurrence; hence, small differences in the number of dry days 
cause that p-values be close to zero. 
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5.3. Analysis of precipitation change 

One of the most sensitive aspects of the SRP methodology is that it keeps the 
precipitation time-structure almost intact. That is, a probabilistic transformation can 
change the scale of the precipitation and the number of dry days, but not the 
disposition of dry days alternating with wet days. Therefore, it is important the fact 
that the models can reproduce the observed conditions of wet and dry spells. 

In this regard, Figure 8 shows that regional models (RCMs) adequately 
reproduce the climatic characteristics of wet spells for the reference period 1961-
2000. In general, the projection for 2001-2040 shows no remarkable changes 
compared with the reference period. However, there is a slight reduction in the 
length of wet spells in all quarters except for winter. This reduction, in addition to 
the slight increase in the peaks in autumn projected for some stations, implies a 
slight increase in the index n, as shown in Figure 7. 

The reduction of the wet spells length is greater in summer and autumn. In 
contrast, total precipitation of wet spells decreases more clearly in summer than in 
autumn, in most of stations. This happens because in summer months, rainfall 
intensity remains approximately constant (Fig. 9). 

As for dry spells, the average length is adequately simulated for the reference 
period (Fig. 10). However, probability distributions of the length of dry spells have 
certain differences compared with the observations, although it does not affect the 
seasonal cycle. For the period 2001-2040, numerical outputs of RCMs projected a 
clear increase in the length of dry spells in spring and summer of more than 0.5 days 
per period without rainfall. Note that the increased length of dry spells is consistent 
with the slight decrease in the length of wet spells projected for 2001-2040 (Fig. 9). 

The increase in heavy precipitation in the Basque Country can be related to the 
possible mediterraneanisation of climate (Moreno 2005). The increase in the number 
of dry days (Fig. 10) and the highest concentration of precipitation in a short time 
(Fig. 9) support this hypothesis. The possible mediterraneanisation of Basque 
climate may be driven by the expansion of the Hadley cell (Lu et al. 2007). The 
global warming projected under the A1B scenario causes a dilation of the cell and, 
consequently, the subtropical subsidence area would move towards the North. The 
main physical implications of this phenomenon are two: 1) lower precipitation in 
spring due to the increased presence of anticyclones. 2) Increased intensity of 
autumn precipitation in the Mediterranean climate area due to increased summer 
warming and, hence, more water available in the atmosphere. 

6. Conclusions 

Both the modified Gumbel distribution and the generalised version of the log-
logistic distribution have a high goodness-of-fit for the empirical probability of daily 
precipitation in the Basque Country. In particular, the latter theoretical distribution 
showed slight better results, with a mean error of 4% compared to 5% obtained by 
Gumbel distribution. The probabilistic transformation of RCM adequately corrects 
the probability distribution and makes it indistinguishable from the stations in the 
reference period. In fact, the errors of the simulated series are generally less than 5% 
for both average and standard deviation. The error in the number of days without 
precipitation is less than 1% in most cases. Moreover, this transformation does not 
directly affect the climate signal of the models, although brings it in the line with the 
frequency of precipitation probability of the stations. Therefore, the methodology is 
useful to quantify possible changes in local climate in terms of absolute amount of 
precipitation and the way it is distributed throughout time (e.g., dry spells, wet 
spells, index n). 
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The results of this study show that changes in the time distribution of rainfall are 
expected during the 21st century and under the A1B scenario. Although duration of 
consecutive days with rainfall may be shortened, rainfall would be concentrated in 
shorter time-periods, thus increasing the intensity of the daily maximum in autumn. 
This idea is reinforced because the index n projected for the rest of the century 
shows a slight increase, from 0.57 to 0.60. With regard to highest precipitation, most 
models project a clear increase. For example, precipitation with a return period of 
100 years will increase to 30% in 2001-2040 compared to 1961-2000, in the 
Western Basque Country. For the period 2041-2080, the increase may exceed 40% 
in most of areas. In addition to the intensification of precipitation, mainly in autumn, 
climate models project an increase in the length of dry spells and a slight decrease in 
summer precipitation. Therefore, these changes indicate a possible 
mediterraneanisation of the Basque climate. 
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TABLES 
 
Table 1. Correlation (R2) and slope of the climatic values of the average rainfall, 
daily deviation and dry days in the series simulated by the models, compared with 
baseline stations. 
 

 Correlation (R2) Slope 

RCM Mean 
rainfall 

Standard 
deviation Dry days Mean 

rainfall 
Standard 
deviation Dry days 

Aladin-ARPEGE  0.99 0.98 0.97 1.07 0.97 0.99 
CLM-HadCM3Q0  0.99 0.96 0.97 1.07 0.95 1.01 
HIRHAM-HadCM3Q0  0.99 0.98 0.98 1.14 1.00 0.98 
HIRHAM-BCM  0.99 0.98 0.97 1.05 0.97 0.99 
RACMO-ECHAM5-rt3  0.99 0.97 0.97 1.08 0.99 1.02 
REMO-ECHAM5-rt3  0.99 0.97 0.97 1.08 1.01 0.96 
PROMES-HadCM3Q0  0.99 0.97 0.96 1.11 0.97 0.96 
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Figure captions 

Figure 1. a) Location of the stations used in this study (AEMET). b) Example of 
digital terrain model used in the regional climate models of ENSEMBLES-rt3. c) 
Election of interest grid points for the Basque Country, which distinguishes between 
sea points (blue) and ground points (orange). 

Figure 2. Comparison of Mean Normalized Absolute Error (MNAE) of the two 
probabilistic models used for the standardisation of the 45 stations with at least 40 
years of data. 

Figure 3. Relative mean absolute error (RMAE) and relative bias (RBIAS) of the 
average and standard deviations of simulated time series. Each bar represents the set 
of all stations according to each of the seven RCMs. 

Figure 4. Absolute and relative mean error (MAE) and bias (BIAS) of the days 
without precipitation of the simulated series. Each bar represents the set of all 
stations according to each of the seven RCM. 

Figure 5. Return level plots of the daily precipitation for the used stations, in 
according to the two fitted models: modified Gumbel (red) and modified 
LogLogistic (blue). Dashed curves correspond to 95% confidence intervals; points 
correspond to empirical estimates excluding the maximum value of each time-series. 

Figure 6. Projection of the expected daily rainfall for a return period of 100 years 
according to the theoretical curves fitted to the simulated stations. Above shows the 
projection of the absolute value for the three periods (1961-2000, 2001-2040 and 
2041-2080). Below shows the relative change for 2001-2040 and 2041-2080 and the 
error of the simulation compared with observed time series (1961-2000). 

Figure 7. a) Maximum expected rainfall in one day for 1961-2000 simulated with a 
return period of 100 years. The values are estimated according to the theoretical 
curves fitted to the simulated stations, and they are interpolated by using a multiple 
spatial fit. b) Relative change of precipitation described in a), for the period 2001-
2040 versus 1961-2000. The black lines represent the confidence intervals estimated 
from the statistics of the seven RCMs. 

Figure 8. a) Empirical probability distribution of the index n to the set of all the 
stations in the period 1961-2000, and the range corresponding to the seven RCM 
simulations. b) Projection of change for 2001-2040 and 2041-2080. c) and d) 
Respectively, the same as a) and b) but only the rainfall exceeded 50 mm in one 
day. 

Figure 9. Comparison of observed and simulated wet spells for 1961-2000 and 
projected for 2001-2040. Each point of the boxplot represents the climatic value of a 
real or simulated station. Top left shows the average length of spells (days), top 
right, it shows the average daily peak (in millimeters). Bottom right shows the 
average total rainfall (in millimeters) and lower left compares the mean index n of 
wet spell. 

Figure 10. Evolution of dry spells for the period of 2001-2040 versus the period 
1961-2000, both observed and simulated: a) boxplot of the average length of dry 
spells, and b) cumulative probability of the length of dry spells. 
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Figure 2. Comparison of Mean Normalized Absolute Error (MNAE) of the two 
probabilistic models used for the standardisation of the 45 stations with at least 40 
years of data. 
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Figure 3. Relative mean absolute error (RMAE) and relative bias (RBIAS) of the 
average and standard deviations of simulated time series. Each bar represents the set 
of all stations according to each of the seven RCMs. 
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Figure 4. Absolute and relative mean error (MAE) and bias (BIAS) of the days 
without precipitation of the simulated series. Each bar represents the set of all 
stations according to each of the seven RCM. 
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Figure 5. Return level plots of the daily precipitation for the used stations, in 
according to the two fitted models: modified Gumbel (red) and modified 
LogLogistic (blue). Dashed curves correspond to 95% confidence intervals; points 
correspond to empirical estimates excluding the maximum value of each time-series. 
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Figure 6. Projection of the expected daily rainfall for a return period of 100 years 
according to the theoretical curves fitted to the simulated stations. Above shows the 
projection of the absolute value for the three periods (1961-2000, 2001-2040 and 
2041-2080). Below shows the relative change for 2001-2040 and 2041-2080 and the 
error of the simulation compared with observed time series (1961-2000). 



 22

Figure 7. a) Maximum expected rainfall in one day for 1961-2000 simulated with a 
return period of 100 years. The values are estimated according to the theoretical 
curves fitted to the simulated stations, and they are interpolated by using a multiple 
spatial fit. b) Relative change of precipitation described in a), for the period 2001-
2040 versus 1961-2000. The black lines represent the confidence intervals estimated 
from the statistics of the seven RCMs. 
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Figure 8. a) Empirical probability distribution of the index n to the set of all the 
stations in the period 1961-2000, and the range corresponding to the seven RCM 
simulations. b) Projection of change for 2001-2040 and 2041-2080. c) and d) 
Respectively, the same as a) and b) but only the rainfall exceeded 50 mm in one 
day. 
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Figure 9. Comparison of observed and simulated wet spells for 1961-2000 and 
projected for 2001-2040. Each point of the boxplot represents the climatic value of a 
real or simulated station. Top left shows the average length of spells (days), top 
right, it shows the average daily peak (in millimeters). Bottom right shows the 
average total rainfall (in millimeters) and lower left compares the mean index n of 
wet spell. 
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Figure 10. Evolution of dry spells for the period of 2001-2040 versus the period 
1961-2000, both observed and simulated: a) boxplot of the average length of dry 
spells, and b) cumulative probability of the length of dry spells. 

 

 

 


