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1.  INTRODUCTION

Knowing the time structure of sub-daily precipita-
tion is essential for hydrology, especially for the study
of flash floods (Berne et al. 2009). Precipitation accu-
mulation is relatively well measured by rain gauges,
but instantaneous rain rate is very difficult to meas-
ure with high precision, even using pluviographs or
disdrometers (Liu et al. 2013). Averaged intensities
strongly depend on averaging time and rainfall time
structure, which differs according to the natural pro-
cesses that caused it. Thus, rainfall concentration
over time is usually higher for storms than for events
of stratiform rainfall.

Different techniques are available to describe the
time structures of rainfall or its temporal con cen -
tration within an event. For example, the ‘storm de-
sign’ attempts to summarise characteristics of a heavy
rain event for several time scales using the classical
intensity-duration-frequency (IDF) relationship (Watt
& Marsalekb 2013). Synthetic hyetographs are de sig -

ned using mathematical functions such as power laws
and beta functions (Koutsoyiannis 1993, D’Odorico
2005, Beven 2012). Some authors use methods of
 disaggregation and daily-to-sub-daily scaling based
on a stochastic generation of sub-daily sequences.
Examples are canonical/microcanonical cascades
(Schertzer & Lovejoy 1987, Gupta & Waymire 1993),
the Poisson process for storms (Koutsoyiannis et al.
2003, Cowpertwait et al. 2007) and the method of
fragments (Mehrotra et al. 2012, Westra et al. 2012),
which are based on the self-similarity shown by rain-
fall patterns at several time scales. According to frac-
tal theory, precipitation behaviour can be described
by a fractal dimension, obtained for example by the
box-counting method or the Hurst exponent (Feder
1988, Olsson et al. 1992, Taouti & Chettih 2014).
Never theless, these methods find precipitation fea-
tures, such as persistence, but do not offer an indica-
tion of rainfall concentration within a rain event.

On the other hand, several studies attempt to
measure or classify precipitation according to its
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daily concentration throughout the year. Some
indices are based on Lorenz curves for rainfall, such
as the Concentration Index (CI) of Martín-Vide
(2004), which is climatically related to the percentage
of days of rain that accumulate most of the annual
precipitation (Cortesi et al. 2012, Benhamrouche et
al. 2015). Similarly, Maraun et al. (2008) defined 10
sorted categories (C10), and each one of them makes
up 10% of the total rainfall amount for each month of
the year. Klein-Tank & Können (2003) analysed sev-
eral indices, including the fraction of precipitation
due to a set of wet days (95% of wet days) for Europe.

Another way to study temporal concentration of
rainfall is to focus on the convective/stratiform ratio.
However, most indices that have been developed are
based on specific thresholds obtained for a particular
climatic region. An example of this is the β index
(Llasat 2001), designed for the Mediterranean re -
gion. The β index of a rainfall event is defined as the
fraction of cumulative rainfall with a 5 min intensity
equal to or greater than 35 mm h−1, which was taken
by Llasat & Puigcerver (1997) as an indicator of con-
vective precipitation. The IP index of Casas et al.
(2010) can also be used to classify rainfall events
according to the relationship between their intensi-
ties and durations (IDF curves). In particular, the IP
index establishes variable thresholds according to
the climate; it considers a return period of 5 yr and
durations of 5 min and 1, 2 and 24 h.

In summary, all available rainfall indices attempt to
characterise features such as the persistence (e.g.
fractal duration), temporal concentration throughout
the year (CI and C10), or the convective/stratiform
rainfall fraction according its relative intensity (IP
and β). Meanwhile, rainfall time structure (within an
event) is usually simulated using a stochastic genera-
tion but not using a simple index.

In this sense, one way to study the rainfall time
structure is to examine the shape of IDF curves (fix-
ing a particular frequency). The intensity–duration
dependency can be expressed with a power law or a
similar technique, as in the Chicago method and the
alternating block method (Chow et al. 1988, Koutso -
yiannis 1993, Ghahraman & Hosseini 2005). The syn-
thetic hyetograph computed by the Chicago method
requires 2 parameters, but the power law method can
be simplified by using 1 unique parameter. The fitted
exponent of the power function is a dimensionless
index that reports on the rainfall concentration over
time, and therefore, gives an indication of the greater
convective or advective contribution to the precipita-
tion processes (Moncho et al. 2009). This shape index
(henceforth, n-index) can be used not only for climate

studies but also to analyse individual rain events, by
applying it to empirical curves of maximum average
intensities (Moncho et al. 2011). The n-index has
been selected for this work because it has several
advantages over the previous indices described: it
does not depend on arbitrary thresholds, taking val-
ues from 0 to 1, and it can be applied to different time
scales (sub-daily, daily or higher) both for climate
 statistics and studies of weather events. In fact, the
n-index allows the extraction of sub-daily features
of precipitation from daily data, thanks to the self-
 similarity of rainfall at several time scales. Hence, the
aim of this work is to study the temporal behaviour
of typical precipitation around the world, using the
n-index.

2.  DATA

For this study, a total of 66 410 stations were cho-
sen from the Global Historical Climatology Net-
work-Daily database (GHCN-Daily), which contains
over 85800 stations worldwide (Menne et al. 2012).
The selected stations correspond to all of those with
≥1000 values of precipitation and ≥70% temporal
continuity. From the 66 410 stations, slightly more
than half had >8000 records, and over 75% had
>3000 records with 98% continuity. About 25% of
the stations stand out as having >20000 daily
records with 99% continuity. Daily data is very lim-
iting for the analysis of most cases of convective
events (sub-daily), but it can be used to study wet
spells with high temporal irregularity. Other limita-
tions of the data set are that it does not distinguish
between solid and  liquid precipitation, and there is
no information on whether the gauges are heated
for snowfall.

In order to improve the analyses, an additional
dataset of 5347 sub-daily time series was collected
from the Integrated Surface Hourly-Integrated Sur-
face Data (ISH/ISD) of the National Climatic Data
Centre (NCDC), which has >31700 stations world-
wide (Smith et al. 2011). The selection was made on
the basis of a length of at least 3000 values with
≥50% continuity over time (i.e. possible gaps divide
time series such that the longest subset is ≥50%) and
with adequate quality (Dunn et al. 2012). In particu-
lar, a quality control was performed using the
 Kolmogorov-Smirnov test to detect in homo geneities
(Monjo et al. 2013). The most typical inhomo-
geneities resulted from constant and high values
over several days (e.g. 999 for unavailable values),
which were removed. Of the 5347 stations, 75% had
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>34000 sub-daily records (in 5000 d), and 50% had
>40000 sub-daily records (in 10000 d) with 70% con-
tinuity. Regarding the temporal resolution of the sub-
daily data, only 17.8% have a reporting frequency of
1 h. About 75% usually have a low reporting fre-
quency (2, 3 or 4 values per day). In particular, 42.2%
have a 6 h frequency, 23.4% report every 12 h and
9.0% report 3 times per day. However, 45% of them
sometimes report every 1 or 3 h.

Combining both databases, a total of 69 779 daily
time series from the period 1950−2012 were available
for this study. The spatial distribution is very uneven,
depending on the country analysed (Fig. 1). This de -
pends especially on its economic development or its
former colonial dependence. Among the countries
that have a higher density of stations are the USA,
Brazil, India, Australia and the Netherlands. Africa
has a low density in virtually all areas, except for the
south. Polar and high altitude regions also have a low
density of stations, due to their low population.

Precipitation events of ≥3 consecutive wet days
were analysed (see justification in Section 3.2). More
than 25 million events at a daily scale and about

3 million at a sub-daily scale were studied. For com-
parative analysis between the scales, a common set
of 2 million precipitation events was used.

3.  METHODOLOGY

3.1.  Definition of the n-index

Given a particular precipitation event, maximum
amounts for several time intervals can be ordered
according to the time interval length. If the maximum
amounts are each divided by the time interval (t), a
curve of maximum average intensities (MAI) is
obtained. In other words, a definition of the MAI as a
function of time, I(t), is given by:

(1)

where I(t) is the MAI of a time t, and P(t) is the maxi-
mum accumulation in this time. Since maximum accu-
mulations increase with time, dP(t) ≥ 0, and average
intensities decrease with time, dI(t) ≤ 0, the simplest

I t
P t
t

≡( )
( )

73

Fig. 1. Location of the rain gauges from the Global Historical Climatology Network-Daily database (red points) and from the
Integrated Surface Hourly-Integrated Surface Data (other colours). The colour indicates the time resolution of the data (h). 

Point size is inversely proportional to the point density in each area
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function I(t) that satisfies these conditions is given
by the following equation (see Appendix 1):

(2)

where I(t) and I(to) are MAI, corresponding to
times t and to, and n is a dimensionless parameter
that is bounded between 0 and 1. If time to is
fixed as a reference time (e.g. reporting time
step), I(to) is a fitted parameter, and thus, it is
called the reference intensity. Parameters I(to)
and n were fitted using non-linear minimisation
of the mean squared error according to a
 Newton-type algorithm (Dennis & Schnabel
1983). The Kolmogorov-Smirnov test was used to
measure the goodness-of-fit. An example of fit is
shown in Table 1 and Fig. 2.

Note that Eq. (2) is a power law, also used in
some climate studies to characterise IDF curves
(Ghahraman & Hosseini 2005, Moncho et al.
2009). In the present study, the n ‘shape para -
meter’ is used as an index that reports the time
distri bution of precipitation for observed events
(no synthetic hyetographs). The original classifi -
cation of rainfall according to the n-index has been
revised here. Three classes are proposed to de -
scribe the average regime of rainfall time structure:
re gular (n < 0.5), efficient (n = 0.5) and irregular
(n > 0.5). Regular rainfall is related to stationary

behaviour (e.g. orographic rainfall, static cell, etc.)
while the predominance of irregular rainfall is
associated with a rapid evolution (e.g. showers,
thunderstorms, etc.). The ‘efficient’ value of 0.5 is
related to the most extreme precipitation amounts
(see Section 4.3).

( ) ( )I t I t
t
t

o
o

n( )=

74

Precipitation p (mm)

1 3 5 2.5 0.5 0.5 1 2.5

8

10.5

11.5

12

12.5

15

16

Table 1. (Left) A particular rainfall event of 8 d duration: individ-
ual reports (p) in the first row; the table is a scheme to illustrate
the method to obtain maximum accumulation for consecutive
days (other rows). (Right) Maximum accumulation, P(t), in mm for
a time t and its corresponding maximum average intensity, I (t), in
mm d−1 (Fig. 2a). In this case, I (t ) ≈ 5.6(1/t )0.5, where the fitted
value of the n-index is n ≈ 0.50 ± 0.07 (confidence interval of 95%)

t P (t ) I (t )

1 5 5

2 8 4

3 10.5 3.5

4 11.5 2.88

5 12 2.4

6 12.5 2.08

7 15 2.14

8 16 2

Fig. 2. Example of n-index estimation for 2 rainfall events from 8 individual reports: (a,d) hyetographs; (b,e) maximum precipi-
tation P for the integration time t; (c,f) maximum average intensities (MAI) I and fitted curves for each case (Eq. 2). Theore tical
curves (dashed lines) for maximum precipitation (b,e) are built from the combination of Eqs. (1) & (2), i.e. p = Pmax(t/tmax)1−n
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3.2.  Fractal interpretation

Rainfall self-similarity at several time scales was
one of the inspirations for this study. For this reason,
the main concepts of fractality were analysed for the
rainfall in order to find a theoretical relationship with
the n-index (see Appendix 2). In particular, the n-
index can be understood as a fractal dimension of the
rainfall intensity, because the intensity is a ‘density’
of rainfall over its duration, which has a fractal fea-
ture according to the box-counting analysis (Olsson
et al. 1992, Taouti & Chettih 2014). Therefore, it is
expected that MAI (Ik) depends on time resolution rk

as:
(3)

where r1 is fixed (e.g. 1 d), I1(r1) is a fitted constant,
and nF is the n-index acting as fractal dimension of
the MAI. In this equation, time resolution rk can be
understood as an averaging time of the MAI. The
fractal index (nF) has special interest for some uses
(e.g. rainfall stochastic simulation) due to its relation-
ship with the fractal dimension of the event duration

(d), given by the inequality d ≤ nF ≤ 1 (see details in
Appendix 2).

To fit nF, each rainfall event is regrouped into non-
overlapping segments (boxes) of resolution rk, which
is chosen as being proportional to 2k times the initial
temporal resolution r0, that is rk = 2kr0. A minimum of
3 values is considered for k (0, 1 and 2).

3.3.  Criteria and uncertainties

Some uncertainties in the n-index were found,
depending on the considerations taken into account
for calculation. In particular, 3 different criteria were
analysed: (1) MAI calculation method, (2) duration of
the event, and (3) temporal resolution of data.

Considering these factors, several combinations of
criteria can be examined. Six different n were de -
fined with 3 subscripts representing the 3 criteria
(Table 2): nAsσ, nNsσ, nAxσ, nNxσ, nAsδ, nNsδ. Note that
nAxδ and nNxδ are not listed here because the relaxed
and strict durations are the same for the daily scale,
unless the definition of relaxed is changed. A ‘nested

I r I r
r
r

k k
k

nF( )=( ) ( )1 1
1
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Criterion Type Symbol Specification Example

1 Absolute A No approach is considered. MAI is taken for each time interval p: 2, 7, 3, 5, 6
from the absolute maximum amount in each case. P: 7, 11, 15, 21, 23

I: 7, 5.5, 5, 5.25, 4.6
nA = 0.21

1 Nested N An approach considered to estimate MAI: contiguous-to-the- p: 2, 7, 3, 5, 6
maximum values are taken, sequentially from the highest to P: 7, 10, 12, 17, 23
the lowest rainfall record. I: 7, 5, 4, 4.25, 4.6

nN = 0.19

2 Strict s The duration of a rainfall event is delimited by 2 ‘dry’ reports p: 0, 2, 7, 3, 0, 5, 6, 0
(initial and final). A report is considered ‘dry’ if there is <0.1 mm P: 7, 10, 12
precipitation. I: 7, 5, 4

nAs = 0.51

2 Relaxed x The duration of the event is taken from the time interval If r < 1 d
between 2 consecutive reports of <0.1 mm for ≥24 h. p: 0, 2, 7, 3, 0, 5, 6, 0
That is, a ‘dry’ pause of <24 h is allowed. P: 7, 11, 12, 14, 17

I: 7, 5.5, 4, 3.5, 3.4
nAx = 0.48

3 Sub-daily σ The time interval between one report and another is <1 d, For instance, r = 8 h
usually 6, 3 or 1 h. p: 0, 2, 7; 3, 0, 5; 6, 0, 0

nAsσ = 0.51
nAxσ = 0.48

3 Daily δ The time interval between one report and another is 1 d. The previous case, 
aggregated at r = 1 d

p: 9, 8, 6
nAsδ = nAxδ = 0.17

Table 2. Three criteria to calculate the n-index, and examples of individual reports (p), maximum amounts (P) and maximum
average intensity (I ) in arbitrary units and time resolution r. The value of n is fitted for each example. MAI: maximum average 

intensity
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rainfall event’ of duration T occurs when all the max-
imum amounts accumulated in t < T contain each
other as a sub-event. For example, the rainfall event
described in Table 1 is nested for the sub-event of the
first to sixth days, but the seventh maximum accumu-
lation does not contain this sub-event.

In order to test sensitivity to the criteria, compar-
isons were performed for several pairs of samples,
each of 69779 averaged values of n: comparing
nested and absolute indexes, comparing strict and
relaxed indexes, and comparing daily and sub-daily
scales. In each case, the other 2 criteria were fixed.
Therefore, 3 pairs of n were considered for the first
comparison: nAsσ with nNsσ, nAxσ with nNxσ, and nAsδ

with nNsδ. For the second comparison, 2 pairs were
used: nAxσ with nAsσ, and nNxσ with nNsσ. For the third,
the other 2 pairs were compared: nAxδ with nAxσ, and
nNxδ with nNxσ.

According to the definition of the n-index, the frac-
tal version (nF) can give an indication of the self-
 similarity of the intensity at several time scales. Thus,
the comparison between absolute and fractal indexes
was used to characterise this aspect (Eq. 3).

To estimate the n-index in all cases it was neces-
sary to use at least 3 consecutive wet values (i.e. pre-
cipitation >0), since the error of fit (Eq. 2) produced
by using 2 unique values is too high. This is because
a precipitation event shorter than 2 time steps can be
placed symmetrically or asymmetrically between the
2 consecutive measurements, causing large differ-
ences in the estimation of n.

Therefore, to compare daily and sub-daily n (e.g.
nAxδ and nAxσ), it was necessary to use a duration of at
least 3 d for both. For the same reason, to compare
strict and relaxed n (e.g. nAsσ and nAxσ), an additional
consideration is required for the strict n: throughout
the relaxed duration of the event, several strict sub-

events of shorter strict duration occur. Thus, the strict
n considered (e.g. nAsσ) was the average n of the main
precipitation sub-events (upper half, classified by
precipitation amount).

Statistical analysis of the data was preformed using
R (Muenchen & Hilbe 2010, R Development Core
Team 2010). Pearson correlations of n were com-
puted using the t-test at the minimum significance
level allowed for floating point numbers (i.e. p-value
< 2 × 10−16), due to the high number of values (from
the 69779 rain gauges). Parameter errors expressed
in parentheses (significant figure) are at the 95%
confidence level.

4.  RESULTS AND DISCUSSION

4.1.  Comparing criteria for the calculation of n

The estimated error rate (95% confidence level) for
fitted n-values was 18% on average, and was be -
tween 2% (Q1) and 25% (Q3) for all rainfall events.
Most climatic averages of the n-index are close to 0.5,
i.e. in the middle of the bounds (0 and 1). However,
significant differences were observed depending on
the selected criteria, especially the second and third.
Regarding the first criterion, the Pearson correlation
coefficient between absolute and nested n was very
high (r = 0.998) and was generally independent of
data resolution (sub-daily/daily) and of event dura-
tion (strict/relaxed). For example, Fig. 3a shows a
comparison of both MAI methods (absolute/nested)
for strict duration at sub-daily scale (nAsσ vs. nNsσ), but
all the other cases were similar. Differences between
the absolute and nested n were <1%. Fractal inter-
pretation of the MAI led to a fractal version (nF)
that was highly correlated with the absolute/nested

76

Fig. 3. (a) Comparison between nested and absolute n, for sub-daily cases. (b) Comparison between strict and relaxed sub-
daily n. (c) Comparison between daily and sub-daily n, for the same duration of at least 3 d
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 version. A Pearson correlation coefficient of 0.90 was
obtained in both cases. The mean difference be -
tween nF and absolute/nested n was about +7%; in
fact, the slope was 1.070 ± 0.004.

According to the second criterion for n estimation,
important uncertainties were found due to differen -
ces between strict and relaxed durations of sub-daily
events, which can be up to 50%. A globular cluster
with an ellipse form can be observed at the centre of
the cloud of points (Fig. 3b). This cluster varies be -
tween approximately 0.3 and 0.8 for the relaxed n
domain, while it varies between 0.2 and 0.9 for the
strict n domain. That is, for events of at least 3 con-
secutive wet days, strict n of main sub-events is more
variable than the relaxed n. This was expected due to
the smoothing effect forced by the increase in inte-
gration intervals for the relaxed cases.

For the third criterion (fixing the second criterion at
the same duration), it should be noted that there
were no records for n < 0.2 for the relaxed sub-daily
n; however, the abundance was higher for daily cases
(Fig. 3c). Moreover, the centred cluster formed an
ellipse lying slightly above the horizontal, which
implies a lower variability of sub-daily n than daily n.
In this case, the Pearson correlation coefficient was
only 0.68, and the mean absolute difference was
about 30%.

4.2.  Rainfall time structure around the world

Most of the studied cases from around the world
showed an average n between 0.45 and 0.60, both on
daily and sub-daily scale (i.e. nAsδ and nAsσ). Never-
theless, spatial distribution differed noticeably in the
tropical/subtropical regions according to the time
scale analysed (Fig. 4).

Regarding the regions with common outcomes for
both time scales, some areas with high rainfall ir -
regularity (n > 0.5) can be found: the Northern Gulf of
Mexico, the African rainforest and savannah, some
parts of South America, eastern China, Oceania and
some areas of the Mediterranean basin. According to
studies of global frequency and distribution of light-
ning, these areas are characterised by remarkable
convection (Christian et al. 2003). On the other hand,
the consensus areas with a (predominantly) regular
regimen of precipitation (n < 0.5) are: northern Can-
ada, northern Asia, polar areas, orographic effect
areas (eastern Himalaya, west side of the Andes) and
areas affected by the Indian monsoon.

The most important differences were in areas with
irregularity at the daily scale and regularity at the

sub-daily scale. For example, the western USA is
affected by the cool California current and humid
westerly winds, with which a regimen of predomi-
nantly stratiform precipitation is expected (Granger
2005). However, on a daily scale (3 or more days), the
fronts move quickly, causing a rather irregular rain-
fall time structure. Something similar happens in
South Africa, in parts of Australia, and to a lesser
extent, also in northern Europe. Regarding the case
of India, an effective combination of advective/
convective precipitation is caused by the summer
monsoon (Singh & Nakamura 2010, Jiangnan et al.
2014), and therefore, an intermediate irregularity
(n ≈ 0.5) is expected in rainfall behaviour on the sub-
daily scale. However, a greater irregularity was
observed on the daily scale, probably due to the daily
effects of the high frequency of convective systems
(Christian et al. 2003), in addition to the influence of
daily movements of the planetary-scale tropical rain
belt (Gadgil 2003).

In general terms, the sub-daily/daily ratio of n (par-
ticularly nAsσ/nAsδ) was between 0.8 and 1.1, with an
average value of about 0.9. The regions charac-
terised with irregular rainfall showed a quotient ≥1,
while regions with a regular rainfall regimen pre-
sented a quotient <1. This is due to daily n having
lower variability than sub-daily n, and can be ap -
proximated to nAsδ ≈ 0.54 ± 0.06, while nAsσ ≈ 0.50 ± 0.10
(with 1 SD). In fact, the weak dependency is nAsδ ≈
(0.403 ± 0.005) + (0.263 ± 0.009) × nAsσ (significant
 figures at 95% confidence level).

The differences between nAsδ and nAsσ can also be
explained using the latitudinal profile of n (Fig. 4b,d).
The daily n profile reflects the latitudes where as -
cents occur due to dynamic forcing — that is, around
40º north and south, linked to the interactions be -
tween subtropical and polar-front jet streams, and a
thin strip around the equator, corresponding to the
centre of the Intertropical Convergence Zone (ITCZ)
(Granger 2005). In these regions, a predominance of
irregular precipitation (n > 0.5) was expected on a
daily scale. On the other hand, the sub-daily n profile
showed an important dependence on location in the
warmest regions of the planet (i.e. tropical and sub-
tropical areas), although it has a greater uncertainty
(due to fewer data points). Therefore, sub-daily n is
more representative than daily n concerning the
 convective/stratiform fraction of precipitation, espe-
cially as it best represents latitudes with the highest
frequency of convection (Christian et al. 2003). Con-
vection processes are less reflected on the daily scale
because large-scale processes (e.g. planetary waves)
have an effect on the variability of n. Nonetheless,

77



Clim Res 67: 71–86, 201678

Fig. 4. (a) Spatial distribution of daily n (i.e. nAsδ). (b) Latitudinal profile of daily n, according to the 25th, 50th and 75th
 percentiles. (c) Spatial distribution of sub-daily n (i.e. nAsσ). (d) Latitudinal profile of sub-daily n, according to the 25th, 50th
and 75th percentiles (from left to right). The dashed line at 0.5 marks the theoretical threshold for the regular/irregular rainfall
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the profile of daily n (Fig. 4b) bears some similarity to
the profile of stratiform/convective rain based on the
Tropical Rainfall Measuring Mission (Schumacher &
Houze 2003). The differences in the dynamic pheno -
mena at several time scales are strongly related to
the effects of time resolution on the n-index (see
 Section 4.5).

Another advantage of sub-daily n is that it presents
a suitable seasonal behaviour regarding the annual
cycle of each region (Fig. 5). For example, Oceanic

climates (Cfb and Cfa according to Köppen classifi-
cation) generally present a very regular rainfall,
which corresponds to n < 0.5 throughout the year
(Fig. 5b,g), although it is close to 0.5 for some regions
(Fig. 5a,r). In contrast, Mediterranean climates (Csa
and Csb) show a higher n in their dry summers (n >
0.6), which are characterised by weak thunderstorms
(e.g. Fig. 5i). Meanwhile, tropical and humid sub-
tropical climates oscillate around n = 0.5 throughout
the year (Fig. 5d,f,l,p).

79

Fig. 5. Monthly averages of sub-daily n-index (red lines) and rainfall normalised using the wettest month (bars) for 18 obser-
vatories: (a) Hihifo (Wallis Island), (b) Princeton Aerodrome (Canada), (c) Colonia Juan Carras (Mexico), (d) Columbus Metro -
politan Airport (Georgia, USA), (e) Salta airport (Argentina), (f) Belem airport (Brazil), (g) London/Heathrow airport (UK), (h)
Ústí nad Orlicí (Czech Republic), (i) Milos (Greece), (j) Tamanrasset (Algeria), (k) Cape Columbine (South Africa), (l) Saint-
Denis/Gillot (La Réunion), (m) Malye Karmakuly (Russia), (n) Vavuniya (Sri Lanka), (o) Chara Airport (Russia), (p) Toyooka 

(Japan), (q) Territory Grape Farm (Australia), (r) Auckland Aero Aws (New Zealand)
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4.3.  Interpretation and uses of the n-index

The n-index informs on the behaviour of rainfall
over time, i.e. the accumulation of precipitation in
relation to the temporal structure (evolution/motion)
of a cloud or a cloud system. Generally, the evolution
of convective clouds is faster than a frontal system or
orographic precipitation. However, convective pre-
cipitation may remain stationary in a location for
 several reasons: constant storm feeding, topographic
features, balancing driving forces, etc. In such cases,
a value of n < 0.5 is expected despite the convective
character. In fact, a moist air stream is re quired to
maintain the life of a storm, which is re flected in the
low n-value.

Characterisation of rainfall using n can be used to
extrapolate or interpolate the behaviour within a par-
ticular rainfall event. For example, torrential rain is
usually defined with a threshold (e.g. 60 mm) for a
particular duration (e.g. 1 h) (Llasat 2001). Using n,
each threshold can be generalised for any event
duration (Eq. 2). In addition, from a set of pairs of
 values (times and amounts), it is possible to estimate
amounts for middle time points. This property can be
useful for forensic meteorology.

According to fractal analysis of rainfall duration, n
can be interpreted as a fractal dimension of the rain
rate (see Appendix 2). In fact, analysing the correla-
tion between the fractal type (nF) and the absolute n-
index resulted in a Pearson correlation coefficient of
about 0.90. Moreover, the index also showed a cer-
tain self-similarity at several time scales. In particu-
lar, the comparison between nested and absolute n
(Fig. 3a) showed that nested n is a good approxima-
tion of absolute n. This means that most MAIs are
naturally nested (encompassing each other); in other
words, maximum precipitation of duration t1 < t2 gen-
erally occurs during the maximum precipitation of
duration t2. This general phenomenon of nesting is
consistent with the results of other research. For
example, Olsson et al. (1992) found a scale-invariant
behaviour of the rainfall time structure using a box-
counting method in a rainfall time series, which
analyses persistence. In another study, Moncho et al.
(2011) observed that virtually all global extreme pre-
cipitation records are nested within those of longer
duration. This is possible for all time scales because
the precipitation events present an efficient regimen,
and thus, satisfy nAsδ ≈ nAsσ ≈ 0.5. In fact, this critical
value is called ‘efficient’ because it provides the most
adequate time structure (temporal irregularity) to
describe global extreme precipitation for all time
scales (Moncho et al. 2011). In fact, the wettest re -

gions of the world usually present an average n-
index close to 0.5 that is constant throughout the year
(e.g. see Fig. 5l,p).

The scale-invariance reflected by the index sug-
gests that it could be useful to perform a disaggrega-
tion of precipitation data, or daily-to-sub-daily scal-
ing (e.g. applying to numerical weather or climate
models). That is, the behaviour of rainfall accumula-
tion can be transferred, for example, from the daily to
the hourly scale. However, additional information is
required for this purpose, such as the duration of the
event and the number of subevents.

4.4.  Duration and intensity effects on the n-index

Usually, convective phenomena have a shorter du -
ration than frontal systems and large-scale advec-
tions. Therefore, it is expected that n for the shortest
sub-events is significantly greater than n for the
longest sub-events (see Section 3.2).

The results relating to the main sub-events show
that the dependence of n on sub-event duration is
statistically significant for >4 d (Fig. 6a), with a slope
of around −0.0125 ± 0.0005 d−1. However, the depen -
dence is not remarkable for shorter durations be -
cause one can find both convective and stratiform
rain of short duration. Initially, the average value is
close to 0.5 (efficient regimes). For durations >4 d,
the time slope of n is stronger (−2.5 ± 0.1% d−1),
because it is difficult to find many longer lasting con-
vective processes. For durations >15 d, n approaches
0.3 (usually associated with stratiform regimes).

On the other hand, the climatic average of the
n-index is generally independent of the reference
intensity (Fig. 6b). However, some features were
found for the highest resolution (hourly data) as well
as for the highest amounts of precipitation. At an
hourly scale, the highest intensity presents an aver-
age n of slightly over 0.5 (which is the general aver-
age), while at a lower time resolution, the differences
are not significant. The accumulation of precipitation
depends on the efficiency of the physical phenome-
non that produces it. This is particularly visible for
rainfall greater than the 95th percentile (calculated
for each rain gauge). The places with lower maxi-
mum intensity have a greater n (i.e. have convective
regimes for their extreme rainfall), while those with
the highest intensities in the world have an n-index
very close to 0.5 (efficient regime). Therefore, the
n-index of a certain place may depend on the
 frequency (return period) of rainfall intensities or
amounts.
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4.5.  Time resolution effects on the n-index

No general time-dependence of n was found within
short events/sub-events (i.e. within a 4 d event, n can
vary — or not — and in any way). However, the statis-
tical differences between daily and sub-daily n (see
Section 4.2) suggest a time effect on the n-index, at
least due to the temporal resolution of data. In this
sense, a weak but significant relationship was found
between the sub-daily n and the time resolution. For
a range between 1 and 12 h resolution at least, aver-
age n is given by:

(4)

where n(r) is the average n at a time resolution r,
expressed in hours (i.e. from 1 to 12 h), ro is the
minimum resolution (1 h), and the parameter errors
in parentheses (significant figure) are at the 95%
confidence level. For example, the average for
hourly reports is n = 0.46, while n = 0.55 is
expected for 24 hourly reporting, i.e. the same
value observed for daily n (particularly nAsδ ≈ 0.54 ±
0.06, according to Section 4.2). Therefore, the regu-
larity of precipitation depends on the time resolu-
tion of the measurement, as does persistence,
which has been analysed by other authors (Feder
1988, Olsson et al. 1992, Taouti & Chettih 2014).
Taken to extremes, it can be ob served that rainfall
intensities are more regular (within an event) from
1 s to another than from 1 d to another; this phe-
nomenon is independent of the type of precipita-
tion. Using a mathematical view, time  resolution
effects on the n-index can be interpreted as an

interference with the fractal duration of the rainfall.
That is, atmospheric general circulation shows a
self-similarity at several time scales, and it is math-
ematically reflected in the differences between the
daily and sub-daily n-index.

In summary, time resolution may affect the meas-
urement of MAI; and thus, Eq. (1) can be modified as:

(5)

where I(t, r) and I(to, ro) are MAI that respectively cor-
respond to a time t with a resolution r, and a time to

with a resolution ro, α is the new parameter (which is
close to 0.028 according to Eq. 4) and n is the cor-
rected index according to time resolution. Hence,
sub-daily and daily n were calculated again using
Eq. (5) for analysis without the effect of temporal res-
olution. After the correction, the indexes were very
similar to each other, so much so that new corrected
distributions could be combined, showing a better
spatial coherence (Fig. 7) than before correction. For
example, note the spatial incoherence between
Spain and France in the index field of Fig. 4c, which
is lower in Fig. 7b.

With this modification of n, the analysis of the rain-
fall time structure is similar to that in Section 4.2,
especially according to sub-daily n. The main regions
with a high irregularity (within a rainfall event) are
the Gulf of Mexico, the Caribbean Sea and some
parts of Oceania. Rainforests and most of the grass-
lands of the world have a sub-daily n close to 0.5. The
coldest areas have a low variability (n < 0.5), as do the
regions with predominant maritime winds.
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Fig. 6. (a) Dependence of sub-daily n on event duration. (b) Dependence of sub-daily n on reference intensity (from Eq. 2). Box
plots represent the relative distribution of points along the domain of n. The horizontal boxplot provides a description of the 

vertical plots (numbers in the former are quantiles)
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5.  CONCLUSIONS AND PERSPECTIVES

The n-index for particular rainfall events is boun -
ded between 0 and 1, but its average value is be -
tween 0.4 and 0.6 for most cases, i.e. it has a small cli-
matic range. However, the threshold of 0.5 allows
discrimination between areas with a predominance
of regular rainfall (n < 0.5) and irregular rainfall (n >
0.5), in the sense of the concentration or time distri-
bution of the precipitation intensities (within an
event). Since there is a link between the time struc-
ture of rainfall and its causal processes (advection/
convection), the value of n gives an indication of the
predominance of stratiform/convective rain.

The method of calculating the maximum average
intensities does not affect the n-index; differences
between absolute and nested n are <1%. This indi-
cates that precipitation generally has a nested time
structure. Therefore, self-similarity is found at sev-
eral time scales, so that each maximum accumula-
tion of shorter duration is included within longer
ones. In fact, n can be interpreted as a fractal
dimension of the maximum average intensities,

strongly related to the box-counting dimension of
rainfall duration.

Nevertheless, estimation of n shows an uncertainty
of up to 30% due to the use of a daily or sub-daily
resolution, and up to 50% if dry pauses are consid-
ered as part of the rainfall event rather than using its
strict duration. From this analysis, we conclude that a
sub-daily scale and an absolutely strict duration
should be recommended for calculating n.

In agreement with the sub-daily/daily atmospheric
patterns, the results showed that n is usually greater
at the daily scale than at the sub-daily scale for regu-
lar rainfall (n < 0.5), while for irregular precipitation
(n > 0.5), n at the daily scale is similar to or even less
than that at a sub-daily scale. This is because strati-
form precipitation is more regular at a sub-daily scale
than a daily scale, while the convection processes are
similarly irregular at both scales.

Regarding the dependencies of n, it is approxi-
mately constant relative to time and intensity (within
a particular rain event), but depends weakly on the
temporal resolution of the data and on the frequency
of the event. A higher n is expected for rarer events,
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Fig. 7. (a) Final combination of sub-daily and daily n (first overlaid onto second), both corrected using the relationship with the
time resolution (Eq. 5) and processed for 1 h resolution. (b) A sample of the corrected sub-daily n, processed for 1 h resolution
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while the average n-index is lower for higher tempo-
ral resolutions, which reflect better the processes of
convection/advection.

Finally, some conclusions about spatial distribution
of the n-index can be made. The areas with less
irregularity (n < 0.5) are the colder regions (polar and
high mountain areas) and the orographic retention
zones, or those with quite remarkable maritime ad -
vections. The highest irregularities in rainfall time
structure (n > 0.5) are found near the warmest seas
(especially the Gulf of Mexico and the Caribbean
Sea). The rainforests and most grasslands of the
world have an n-index close to 0.5.

All these findings should be treated with caution
due to the limited data, and these data do not equally
cover all regions of the earth. However, some impor-
tant insights can be drawn from this study. Connec-
tions between the irregularity of precipitation (n-
index) and the nature of its formation (advective/
convective) are supported by the coincidence in the
spatial and temporal distributions of convective rain
and n. These connections should be explored in fu -
ture work, especially using information from numeri-
cal weather models concerning the convective rain-
fall fraction, and comparisons with more accurate
observations at sub-daily scales.

Finally, characterising rainfall using n can allow
the extrapolation/interpolation of the behaviour of
the rain rate for several time intervals. This is useful
for now-casting and forensic meteorology. That is,
the n-index can be a new tool for temporal down -
scaling or disaggregation of several rainfall types
(stratiform, convective or mixed).
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Eq. (2) was obtained by Moncho et al. (2009) using the
relationship between the life cycle of a rainfall system and
its expected average intensity (physical reasoning). In this
appendix, the first author (R. Moncho/Monjo) shows an
alternative method to obtain the equation.

By definition of maximum average intensity (MAI), maxi-
mum accumulation can be written as:

(A1)

where I(t) is the MAI of a time t and P(t) is the maximum
accumulation in this time. Thus, the time derivative (‘) of
both is given by:

(A2)

Since the maximum accumulation P(t) increases with time,
P’(t) ≥ 0, we have:

(A3)

Isolating the term of the derivative, if t > 0 we obtain:

(A4)

Since the MAI decreases with time, I’(t) ≤ 0, the inequality is
completed as:

(A5)

That is, the time derivative of MAI is bounded between 0
and −I(t)/t. Obviously, the solution to this inequality is not
unique. Solutions can be found taking the derivative I’(t) ≡
I’(t,n) as a function of a parameter n bounded between 0 and
1, such as I’ (t,0) = 0, I’ (t,1) = −I(t)/t and −I(t)/t < I’ (t,n) < 0 for
0 < n < 1. The simplest function I’ (t,n) that satisfies all these
conditions is the linear case:

(A6)

Operating as follows:

(A7)

and integrating gives:

(A8)

where k is a constant of integration. The MAI curve
becomes:

(A9)

To express the curve without displaying the constant k, it is
possible to divide I(t) and I(to), so that:

(A10)
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A2.1.  Fractal dimension

The familiar ideas of perimeter, area and volume were
generalised by the Hausdorff measures using the notion of
fractional or fractal dimensions (Falconer 2003). A d-dimen-
sional volume (v) can be defined as a spatial measure with
fractal dimension d (Feder 1988, Falconer 2003):

(A11)

where L is the spatial resolution and k is a constant. Given a
fractal volume v, the average density ρ of a known variable
x with respect to this volume is defined as:

(A12)

For example, the number of buildings along a coastline is a
known variable, but its density depends on the spatial reso-
lution of measurement of coastline length.

In this sense, precipitation accumulation is also a well
known variable, but its temporal concentration depends on
the time resolution. Therefore, rainfall duration can be con-
sidered as a fractal time, similar to the fractal perimeter of a
coastline. Continuing the parallel with the spatial density of
the number of buildings, rainfall intensity can be defined as
the temporary density of the number of bucket-tips counted
by an automatic rain gauge, or of the millimetres recorded in
a manual rain gauge.

A2.2.  Fractal duration of rainfall

The fractal duration of rainfall can be measured using the
box-counting dimension, also known as the Minkowski-
Bouligand dimension, which is closely related to the Haus-
dorff-Besicovitch dimension (Falconer 2003). This method
consists of regrouping a time series into non-overlapping
segments (boxes) of ever larger size (r ), i.e. with lower time
resolution. The number Nr of non-overlapping intervals (of
size r ) with positive counts satisfies the power-law relation
(Olsson et al. 1992, Taouti & Chettih 2014):

(A13)

where c is a constant and d is the fractal dimension, which is

<1 for the case of rainfall duration. With this, the fractal
duration Dr of a time series is a d-volume obtained by multi-
plying the time resolution or fragment size r by the number
Nr, according to:

(A14)

where the time resolution r is taken as a natural number
(without units) corresponding to the number of days, and
thereby, the constant c has the same units as Dr, which is
expressed as a ratio (i.e. wet days per total days). Note the
fractal duration of rainfall is bounded between the instanta-
neous case (d = 1) and the permanent case (d = 0). The defi-
nition of the fractal duration can be better understood by
referring to the example in Table A1.

A2.3.  MAI

Both maximum and total averaged intensity of a rainfall
event depend on the time resolution, mainly because its
duration has a fractal dimension. An individual rainfall
event can be defined as a set of Nr consecutive or non-
 consecutive reports of non-zero values of rainfall at a time
resolution r, with possible pauses of less than a fixed time
interval (e.g. 1 d or r). The averaged intensity ar of this event
is the ratio between its precipitation amount p and its total
duration Dr = Nrr:

(A15)

If time resolution is modified to r1 < r, the ratio between
the initial intensity ar and the modified intensity a1 is:

(A16)

where d is the fractal dimension of the event duration,
according to Eq. (A14). If total duration Dr = r, it is expected
that r1 ≤ D1 ≤ r. Applying Eq. (A15), the maximum amounts
corresponding to time resolutions r and r1, respectively, are
Pr = arr and a1r1 ≤ P1 ≤ arr. Dividing this last inequality by Pr

gives:
(A17)

Defining maximum average intensities I1 and Ir of time reso-
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Appendix 2. Relationship between the n-index and the fractal dimension

r pj,r

1 1 3 5 3 0 0 0 2 0 0 0 0 0 0 0 1

2 4 8 0 2 0 0 0 1

4 12 2 0 1

8 14 1

16 15

Nr rNr Dr ar Ir

6 6 0.38 2.50 5

4 8 0.5 1.88 4

3 12 0.75 1.25 3

2 16 1 0.94 1.75

1 16 1 0.94 0.94

Table A1. Example of a 16 h rainfall event, with 2 ‘dry’ pauses of <24 h. Precipitation amounts pj,r (mm) depend on the time
resolution r (h). The other stated quantities are the number of positive counts Nr (Eq. A13), the fractal duration Dr (Eq. A14)
expressed as a ratio, the averaged intensity ar (Eq. A15) in mm h−1, and the maximum average intensity Ir (Eq. A18) in mm h−1
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lutions r1 and r as I1 ≡ P1/r1 and Ir ≡ Pr /r = ar:

(A18)

That is, the relationship between averaged intensities is
given by Eq. (A16), multiplying by the time resolutions:

(A19)

Taking the logarithm of Eq. (A18) and dividing by ln(r/r1), it
is possible to obtain:

(A20)

where nF is defined as nF ≡ ln(I1/Ir)/ln(r/r1), which is bounded
between 2 values (d and 1). That is:

(A21)

The exponent nF is interpreted as a fractal dimension
bounded between 0 and 1, respectively, for a constant inten-
sity (precipitation amount increasing linearly) and for an
instantaneous precipitation (point value). That is, the dimen-
sion nF of the maximum average intensity is somewhere
between a point and a line.
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