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Abstract 

 

The temporal concentration of precipitation may be characterised using several methods. 

For climate-scale precipitation, concentration measures are usually performed by means 

of dimensionless indices such as the Gini Index or the Theil Index. For the purposes of 

this paper, a set of 66,409 daily time series from around the world were analysed to 

estimate the climatic concentration of precipitation. To this end, some of the most 

widely used indices were tested, i.e. the Theil Index, the Gini Index, the Concentration 

Index, the classic n index and an ordered version of the n index. Results show a strong 

connection between several indices, mainly between the Gini Index and the ordered n 

index. The high correlation of these indices (R = 0.98) reflects a theoretical connection 

between the shape and integration of the Lorenz curve. As regards spatial distribution, 

the three main indices present the same relative areas of high and low concentration. 

The high temporal concentration of precipitation is generally linked to the rapid pace of 

physical processes such as convection in areas with a high degree of insolation and 

warm seas. The low temporal concentration of rainfall can be interpreted as a 

consequence of regular patterns (maritime flows or highly recurrent storms). A 

relationship between the number of rainy days and concentration indices was noted; 

however, their correlation depends on the region analysed. 
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1. Introduction 

 

In the context of climate change analysis or simply as a means to determine the current 

climate, irregular temporal patterns of precipitation prove of great interest. The temporal 

concentration of precipitation is key to monitoring the pace of physical processes in the 

atmosphere. Climatic regions with a more advective regime show regular rainfall 

patterns, e.g. a higher frequency. However, regions with mainly convective rainfall 

show greater irregularity in precipitation behaviour. 

The temporal concentration of precipitation can be determined by means of 

several methods. Some authors use fractal theory to describe the self-similarity of 

rainfall, according to the box-counting method or the Hurst exponent (Feder, 1988; 

Olsson et al., 1992; Taouti and Chettih, 2014). Rainfall irregularity in time is also 

http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms
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described using the Maximum Average Intensity (MAI) and the Intensity Duration 

Frequency (IDF) curves (Ghahraman and Hosseini, 2005). In particular, the rate of 

decline of the MAI curve can be analysed using the n index, which is related to the 

temporal distribution of precipitation (Monjo, 2015).  

Other methods focus on the relationship between the accumulation of a variable 

and its cumulative frequency. This function is known as the concentration curve or 

Lorenz curve, widely used in many sectors (Shaw and Wheeler, 1994). The area under 

this curve is related to the Gini Index (GI) and can be modelled by theoretical 

probability distributions. If an exponential distribution is fitted, the resulting version of 

the Gini Index is referred to as the Concentration Index (CI) (Martin-Vide, 1994, 2004, 

2013). The Concentration Index has been used to analyse the characteristics of rainfall 

in some countries such as Spain, Italy, Iran, China, Malaysia, Chile and Algeria (Alijani 

et al., 2008; Zhang et al., 2009; Suhaila and Jemain, 2012; Coscarelli and Caloiero, 

2012; Sarricolea and Martin-Vide, 2014; Benhamrouche et al., 2015), as well as in 

Europe (Burgueño et al., 2010; Cortesi et al., 2012). In particular, the CI is related to 

the percentage of wet days, which collects most of the annual precipitation. This 

analysis is relevant for Mediterranean climates as it is an indicator of torrentiality and 

erosivity (Martín-Vide, 1994). 

Some disciplines employ information entropy formulae such as the Theil Index 

(TI), derived from the Shannon Index (Cowell, 2000; Jost, 2006), and the Atkinson 

Index, or its related development of the Generalised Entropy Index (Atkinson, 1970; 

Ullah and Giles, 1998). The Theil Index is probably the simplest inequality indicator as 

it does not depend on any additional parameter; moreover, it is a particular Generalised 

Entropy Index case. 

In a climate context, the Theil Index can be adapted to describe the temporal 

inequality of rainfall. Thus, the uneven distribution over time is another property for 

measuring the climatic concentration of precipitation.  

This study seeks to analyse the main techniques for measuring the temporal 

concentration of daily precipitation in time series, and thereby to explore its spatial 

distribution around the world. For this purpose, several indices and their relationships 

are examined, i.e. the Gini Index, the Concentration Index, the Theil Index and a 

modified version of the n index. This paper therefore endeavours to further knowledge 

of how to measure the contribution of the wettest days to total precipitation. Thanks to 

this methodology, new pluviometric regions can be defined according to rainfall 

concentration characteristics, and the indices will prove useful for analysing changes in 

precipitation patterns and their possible influence on erosivity. 

 

2. Data 

 

A total of 66,409 daily time series are available for the period 1950-2014, taken from 

the Global Historical Climatology Network-Daily Database (GHCN-Daily) (Menne et 

al., 2012). 

The selected stations correspond to all those with at least 1,000 daily precipitation 

values and at least 70% temporal continuity. Of the 66,409 stations, slightly more than 

half had more than 8,000 records, and more than 75% exceeded 3,000 records with 98% 

continuity. Approximately 25% of the stations stand out as having more than 20,000 

daily records with 99% continuity.  

Quality control was performed using the Kolmogorov-Smirnov test to detect 

inhomogeneities (Monjo et al., 2013). Only 5% of the time series presented some 



 3 

inhomogeneities, and in these cases, the longest homogeneous sub-time series was 

selected. 

On average, there is approximately one observatory for every 2,244 km
2
 of Earth 

landmass. However, spatial cover is very uneven, depending on the country analysed. 

This especially depends on their economic development or their former colonial 

dependence (Fig. 1). The countries with greater station density include the USA, Brazil, 

India, Australia and the Netherlands. Africa presents a low density in virtually its entire 

area, except for the south. The deserts and the coldest areas of the planet are other 

regions with low station density, due to their small population. 

 

3. Methodology 

 

3.1. Previous concepts 

 

The Lorenz curve is the function that relates the accumulation of a variable (y) and its 

cumulative frequency (x). Using this curve, the Gini coefficient or Gini Index (GI) is 

defined as (Haughton and Khandker, 2007): 
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AS

S
GI 21


   Eq. 1 

where S is the area compressed by the curve y(x) and the equidistribution line y = x (see 

Fig. 2). Therefore, S is equal to 1/2 – A, where A is the area under the curve y(x).Area A 

can be estimated using the trapezoidal rule to integrate y(x), that is:  
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Probability distribution models can be used to simulate area A. According to 

Martin-Vide’s definition of the Concentration Index (CI) (2004), the exponential 

distribution integral y(x) = a·exp(b·x) is commonly used for fitting and estimating this 

area in a theoretical manner: 
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where a and b are fitted parameters of the curve y(x). 

 

3.2. Relative cumulative precipitation 

 

Firstly, the N values of non-zero precipitation p are ordered from the lowest to the 

highest (p
L
), or from the highest to the lowest (p

H
). Hence, relative cumulative 

precipitation Pi (i.e. P
L

i or P
H

i) on the position i is defined as: 
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where pk is the k-th value of ordered precipitation (i.e. p
L

k or p
H

k), fk is its relative 

frequency and N’≤ N is the number of classes or pairs (pk, fk). Precipitation pk can take 

all values with repetitions (0.1, 0.1, …, 0.2, 0.2, …, and so fi = 1/N with N’= N), or it 

can take the unique values (0.1, 0.2, 0.3, 0.4, …, with fi 1/N), 0.1 being the minimum 

non-zero precipitation in millimetres. For both cases of p, the relative cumulative 

frequency Fi is defined as: 
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 The domain of F and P is between 0 and 1. In accordance with the order, F
L
 and F

H
 are 

defined as the cumulative relative frequencies of p
L
 and p

H
 respectively. Note that curve 

P(F) is the same if one uses all values of p (with fi = 1/N) or only the unique values 

(with fi 1/N).  

 

3.3. Inequality-concentration indices 

 

Besides the Concentration Index (CI) of Martin-Vide (Eq. 1 with 3), the Gini Index (GI) 

was also used in this study. From its definition (Eq. 1 and 2), it follows that variable x is 

F
L
 and y is P

L
. The Gini Index can therefore be rewritten as (Haughton and Khandker, 

2007): 

  Eq. 6 

The difference between the CI and the GI is that the first uses theoretical probability 

distribution representing the population of the rainfall (theoretical climate), while the 

second only employs the empirical curve, representing a sample of the rainfall 

(observed values). 

On the other hand, the Theil Index adapted to precipitation is given by: 
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where pi is each one of the N non-zero precipitation values (with repetitions) and p-bar 

(p̄ ) is its average. Note that in this case there is no need to sort the p values. 

 

3.4. Ordered version of the n index 

 

The n index is a dimensionless indicator of the temporal irregularity of rainfall (Monjo, 

2015). It is defined as the exponent of the power law given by the Maximum Average 

Intensity (MAI) of the rainfall, according to its duration (averaging time) (Moncho et al., 

2009). 

In order to compare climatic indices such as the GI with the n index, a 

reformulation of the latter was required. The n index depends on the natural time 

sequence of rainfall events, while the GI is estimated by breaking the natural sequence, 

i.e. by sorting all values from the minimum to the maximum. For this reason, an 

ordered n index (nor) is defined using a MAI linked with the ordered daily precipitation 

records. Hence, the ordered MAI (Ii) is defined as:  
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where P
H

i is the relative cumulative precipitation (Eq. 4) and i is the time in days. Note 

that, generally speaking, ordered MAI is different from the real MAI. An example that 

shows these differences can be found in Table 1. Therefore, the definition of the ordered 

n index (nor) is given by: 
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where I1 and nor are fitted parameters. Using Eq. 8 and Eq. 9, Eq. 10 can be rewritten as 

a Maximum Cumulative Precipitation (MCP) curve: 
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Note that the ordered case of MCP is an absolute version of the Normalised Rainfall 

Curve (NRC) used by other authors (Soman and Kumar, 1990; Jolliffe and Hope, 1998; 

Burgueño et al., 2010). 

 

3.5. Statistical analysis 

 

The nor index was obtained by using the Profile Log-Likelihood (PLL) approach (Raue 

et al., 2009). The climate average of the classic daily n (n, Monjo, 2015) was also 

obtained to compare with the nor index. All indices (n, nor, CI, GI and TI) were 

analysed to obtain a general intercomparison statistic and to determine their spatial 

distribution around the world. Finally, the relationship between the fraction of wet days 

(WD) and the concentration indices was explored. 

In order to enhance the visual analysis, a spatial interpolation was performed using 

two-dimensional Thin Plate Splines (TPS). In particular, interpolation was applied to 

each point and its ten nearest neighbours, extrapolating in circles to the maximum 

distance of the neighbours. The resulting raster was obtained by averaging all 

contributions (66,409 interpolations), weighted by the inverse of the distance.  

All statistical analysis was performed by using the R language (Muenchen and 

Hilbe, 2010; R Development Core Team, 2010). A very low level of significance (p-

value < 2·10
–16

) is considered for Pearson correlation between indices because it is the 

typical floating point error of R operations. 

 

4. Results 

 

4.1. Intercomparison of indices 

 

A very high correspondence between the CI and the GI was found, with a Pearson 

correlation of R = 0.994 and a Mean Normalised Absolute Error (MNAE) of 0.8% (Fig. 

3a). In 95% of cases, absolute error is less than 2%. Therefore, for practical purposes, 

they are indistinguishable, at least for daily precipitation.  

The correlation between nor and the GI is very high, R = 0.98 (Fig. 3b and Table 2). 

This result reflects a strong mathematical connection that can be seen in section 5.1. In 

the case of the classic n index (n), its correlation with the GI is lower but also 

remarkable (R = 0.71, p-value < 2·10
–16

). In fact, it is higher than the correlation 

between n and nor (R = 0.63, p-value < 2·10
–16

). This result is surprising because the 

classic n index results from individual calculation for each rainfall event (―weather 

perspective‖), while the GI and nor are calculated by sorting all the climatic values of 

each time series (―climate perspective‖) (see section 5.2). 

The Theil Index does not use cumulative precipitation and therefore, a priori, it is 

the most different of the indices analysed. However, it shows a high correlation with nor 

(R = 0.76) and with the GI (R = 0.75) (Fig. 3c and Table 2). The theoretical values of 

the TI varies between 0 and 1, but they barely reach the threshold of 0.25 (99.95
th

-

centile). 

 

4.2. Spatial distribution of daily precipitation 

 

In accordance with the mathematical relationships, the three main indices analysed (GI, 

nor and TI) present a similar spatial distribution (Fig. 4 to 6). The location of the areas 
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with the highest/lowest concentration is practically the same (especially for nor and GI), 

and therefore the three indices are analysed together.  

Among the areas with higher climatic concentration of rainfall, two groups are 

noteworthy: (1) seasonally warm coastlines (Australia, Brazil, the Caribbean and the 

Mediterranean); and (2) areas near the world’s major deserts, mainly in the western and 

northern sides. For example, mention can be made of the northern Gobi Desert (China 

and Mongolia), western Thar Desert (India), most of the Arabian and Sahara Deserts, 

western Sonora Desert (USA and Mexico), eastern Patagonian Steppe (Argentina) and 

Atacama Desert (Chile). According to Sarricolea and Martin-Vide (2014), Chile’s 

highest concentration is found in the northern region with a Mediterranean climate 

(approximately 30°S), not far from the Atacama Desert.  

As an extension of the group (1), other high concentration areas are the subtropical 

and tropical regions such as Madagascar, Southeast Asia and much of the Pacific 

Islands. In general, the characteristic heat of both groups leads to a faster life cycle for 

the precipitation systems, since the water cycle is amplified by higher temperatures 

(Roderick et al., 2012; Durack et al., 2012). East Asia is a special high concentration 

case due to the atmosphere dynamics: precipitation bands of the monsoon season move 

rapidly northward throughout late spring/early summer (Ding et al., 2005). This rain 

belt, referred to as the Mei-Yu (China), Baiu (Japan) and Changma (Korea), reaches 45 

degrees north (Bao and Yu 2014). The East Asia case contrasts with the Indian Summer 

Monsoon, which presents a more persistent precipitation regime and therefore rainfall 

concentration is moderate (values close to the median). 

On the other hand, the regions with more regularity can be classified into three 

types: (1) arid/semi-arid areas with low convection (Kalahari Desert, eastern Sonora 

Desert extending to other areas of the Western United States and the Gobi Desert 

interior); (2) oceanic climate regions with a continuous maritime flow (e.g. New 

Zealand, Western France and some parts of Western Canada) and (3) rainforests or 

pluvisilva with a recurrent pattern of daily storms (e.g. interior of Brazil and Guinea).  

The latitudinal profile (quartiles Q1, Q2 and Q3) of the indices is an interesting 

aspect of the spatial distribution. The GI profile is very similar to the nor profile, 

differing only in terms of scale (mean value and width of the distribution) (Fig. 4b and 

5b). However, the classic n profile differs as regards the polar latitudes because these 

regions have a stratiform regime (low n), but the rainfall is irregularly accumulated 

throughout the year (high nor). The TI profile shows a great width (Q1-Q3) in the 

northern distribution (Fig 6b), probably due to the greater continentality of the Northern 

Hemisphere (with a higher temperature range). In fact, the Southern Hemisphere shows 

more regularity in rainfall accumulation according to the concentration indices 

(especially in 10ºS compared to 10ºN). 

 

5. Discussion 

 

5.1. Temporal data coherence 

 

Data selection criteria were adopted according to one of the study’s main objectives, 

namely, to obtain an approximate spatial distribution of the concentration indices 

around the world. However, some countries have a low station density (Fig. 1) and a 

short time-series length (less than 5,000 records), especially in some parts of Africa, 

Northwestern China and Oceania (Fig. 1). Therefore, relaxed criteria were chosen in 

order to provide sufficient spatial coverage, but with sufficient climate information: 

time-series with at least 1,000 records and with at least 70% temporal continuity. 
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This low threshold may seem insufficient to be compared with longer series, some 

of which cover the entire period (1951-2014). Nevertheless, an analysis was performed 

of the effects of considering one time period or another on the spatial distribution of the 

indices. In particular, a set of time series was chosen, all of which spanned at least 40 

years, 20 years in the period 1951-1975 and 20 years in 1975-2000. The results showed 

that both spatial distributions are very similar, even to that obtained with the relaxed 

criteria. In fact, an exhaustive analysis of the GI trends was performed, taking in 

account all time series with at least 20 years’ worth of data, but most of them did not 

reveal significant trends. Only 28% showed trends higher than ±0.1 century
-1

 at the 

level of p ≤ 0.05, and 19% (included in the 28%) was significant at the level of p ≤ 0.01. 

Therefore, we can conclude that the selected criteria do not affect the spatial analysis 

shown in this study. 

 

5.2. Connections between the nor and concentration-entropy indices 

 

The results showed a strong relationship between the nor index and the Gini Index; 

hence, a mathematical connection is expected. Firstly, it is easy to demonstrate that the 

MCP curve, P
H 

= f(i), is the symmetrical one of the Lorenz curve, P
L 

= f(F
L
). Using a 

transformation of the time i in a relative time F
H
 ≡ i/N, it can be seen that the 

normalised rainfall curve P
H 

= f(F
H
) is the same as 1 – P

L
 = f(1 – F

L
). For this reason, it 

is expected that the integration area of the Lorenz curve (related with GI) depends on its 

shape (related with nor). In particular, the empirical relationship between both indices is 

a power law:  

 
GInor   Eq. 11 

where γ ≈ 0.66 + 0.34·GI, or simply γ ≈ 0.85 (p-value < 2·10
–16

).  

However, the explicit theoretical relationship is not trivial at first glance. The Gini 

Index is directly related to the average of the relative cumulative precipitation (see 

Appendix A):  
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While nor is obtained as a fitted parameter of Eq. 9 or 10, this can be approximated by a 

weighted average of the P
H 

logarithm (see Appendix B): 
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and is very roughly approximated as: 
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where αN(i) ≈ ln(N) – lni –1 + 0.5/N ·ln(2πN) is interpreted as a weight. Eq. 14 therefore 

presents a strong connection with Eq. 12, especially if the weight αN(i) is replaced by 1. 

These weights, which are higher for lower positions (i << N), have been obtained for 

linear regression using least squares. Nevertheless, for a non-linear regression (e.g. PLL 

approach), the weights are closer to 1. Hence, the empirical relationship between nor and 

GI (Eq. 11) has been theoretically justified by the connection between Eq. 12 and 14. 

On the other hand, Eq. 13 has a structure close to information entropy formulae 

such as the Theil Index (Eq. 7) and one of the Atkinson indices (AI) (Eq. 15; Atkinson, 

1970), or its equivalent version in the Generalised Entropy Index (GE) (Eq. 16; Ullah 

and Giles, 1998; Haughton and Khandker, 2007). 
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where go is a normalisation constant (equal to 1 + ln P
L

1), which is found for the 

particular case of using a relative cumulative variable (i.e. P
L

i). Note that the 

relationship between both indices is AI = 1 – exp(–go·GE). 

Similarities between both entropy indices (AI, GE) and the tested indices (GI, nor, 

TI) are shown in Table 2. In particular, it is found that the Pearson correlation between 

GI and AI is very high (R = 0.91).In fact, a relationship between both indices was found 

by other authors (Lambert et al., 2003). The GE has a lower correlation than the AI for 

all indices except for TI, which shows R = –0.92. Overall, the Gini Index (or the CI 

version) is the most informative of all the indices (with an average correlation of 0.84). 

Note that the CI does not appear in Table 2 as it is considered that it provides redundant 

information regarding the GI, i.e. both have the same correlation with the rest of the 

indices. 

 

5.3. Interpretation of the connections 

 

The high correlation between the classic n and the GI (0.71) is more difficult to explain 

than the connection between nor and the GI, because n is the average for all individual 

rainfall events (for a location), while the GI is estimated for the entire duration of a time 

series. In other words, a priori there is no mathematical connection between both 

climatic features. However, a physical connection is expected. In particular, it can be 

said that the time structure of a rainfall event is related to irregular precipitation 

distribution on wet days during the year: for climates with greater rainfall concentration, 

this concentration is also greater within the rainfall events. In other words, the time 

structure and irregularity of precipitation are reflected in a similar manner at low and 

high time scales; and this is because the pace of physical processes (evaporation + 

transport + condensation) is also interconnected at various time scales (the energy of the 

sensible and latent heat flux is propagated throughout the water cycle). In fact, the n 

index shows autosimilarity properties at several time scales, according to its connection 

with the fractal dimension of the rainfall events (Monjo, 2015). In addition and 

according to the current study, it could be said that nor and the GI reflect characteristics 

of both the climatic concentration and information entropy of the precipitation, which 

are related to the physical processes of convection and transport. 

It is hoped that the fractality of the rainfall concentration can be extended to the 

number of rainy days as an index of how precipitation is accumulated over a few or 

several days. In other words, it is expected for higher concentration to be observed in 

climates with fewer wet days. A negative correlation is therefore expected between the 

concentration indices and the fraction of wet days (WD). 

However, the obtained Pearson correlation depends on the region analysed (Fig. 7). 

Regions with higher/lower rainfall concentration do not always correspond to the 

regions with the lowest/highest number of rainy days. That is, there may be cases where 

it rains few days per year, but very similar amounts are recorded over those days. 

Likewise, there may be areas where it rains almost every day, but the accumulation of 

rainfall is highly irregular for some days compared to others. This is observed 

throughout the positive or at least non-negative correlation of some regions of the world 

(Fig. 7), and somehow it is noted in the spatial distribution of the three main indices 
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(Fig. 4 to 6). The Kalahari Desert (Southwest Africa), the Gobi Desert interior (China 

and Mongolia) and interior areas of the Sonora-Mojave Desert (Mexico and the USA) 

do not show a large concentration, while oceanic climate regions (Cfb/Cfc according to 

the Köppen classification) such as Germany and the Netherlands do not show the 

uniformity that was expected according to their high number of wet days. 

For most of Asia, northern Africa and the Mediterranean Basin, the correlation 

between WD and the GI is negative and statistically significant. Cortesi et al. (2012) 

found similar results for Europe (R = −0.68, p-value <0.01). In agreement with 

Burgueño et al. (2010), Europe presents a north-to-south spatial pattern, from the west 

maritime temperate climate (low GI and high WD) to the Mediterranean climate (high 

GI and low WD).  

Differences in the patterns of India and Southeast Asia are also observed 

according to the sign of the correlation. The most persistent rainfall regime in India is 

framed within a shorter period (summer monsoon), i.e. yearly rainfall is accumulated as 

a truncated triangular (almost rectangular) function. Hence, rainfall concentration 

increases when the number of rainy days is extended (positive correlation). In contrast, 

the rain in Southeast Asia is irregularly recorded throughout the year as an entire 

triangular function. Therefore, a shorter rainfall period causes a higher concentration 

(negative correlation). 

 

 

6. Conclusions 

 

Strong connections were found between the indices analysed, and therefore just one can 

be used for most comparative analyses. In particular, we recommend using the Gini 

Index (GI) due to its simplest estimation and its highest correlation (R > 0.7) with the 

other indices. Taking this index as a basis for comparison, some mathematical features 

can be gleaned. According to its similarity with the Concentration Index (CI), the 

Lorenz curve can be simulated using an exponential function. In addition, on account of 

the mathematical relationship between the GI and the nor index, it can be said that the 

nor index is related to the shape of the Lorenz curve. 

The high concentration of precipitation is linked to the rapid pace of physical 

processes such as convection. In fact, regions with the highest concentration correspond 

to areas with a high degree of insolation (arid or semi-arid regions) or are influenced by 

warm seas, such as the Gulf of Mexico, the Western Mediterranean and the Arabian Sea. 

In general, low rainfall concentration can be interpreted as a consequence of 

regular patterns such as large-scale maritime flows (advective processes) or repetitive 

patterns such as a successive passage of lows or storms. Examples of the repetitive 

passage of lows are France and parts of Canada, whilst cases of recurrent storms occur 

in Brazil and Eastern Peru. Desert regions can be classified into two types according to 

their high or low precipitation concentration during the few days of rain. In particular, 

the highest concentration for deserts is observed in coastal areas (e.g. west of the Sonora, 

Atacama and Thar deserts), whilst the lowest concentration is located in inland areas 

(e.g. east of the Sonora, Thar and central Sahara deserts). The Asian monsoon also 

presents two different types: the Indian Summer Monsoon (with moderate rainfall 

concentration values) and the East Asian Monsoon (with very high concentration 

values), according to the higher or lower persistence of rainfall events.  

The correlation between the number of rainy days and the concentration indices 

depends on the region analysed. For example, the regions with uneven rainfall (e.g. the 

Mediterranean Basin and South-Eastern China) present higher rainfall concentration 



 10 

when less rainy days occur (negative correlation). However, the regions with regular 

rainfall patterns (e.g. Brazil and India) show a higher concentration when more rainy 

days are reported (positive correlation). 

This study could serve to characterise the world’s climates according to rainfall 

concentration and the physical mechanisms governing this behaviour. In fact, the 

concentration indices analysed prove useful for measuring climate changes in rainfall 

patterns and their influence on erosivity. 
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Appendix A. Obtaining Equation 12 

 

Given the definitions of relative cumulative precipitation (P
L
) and relative cumulative 

frequency (F
L
) from Eq. 4 and 5, the Gini Index (GI) is defined as: 

 A
AS

S
GI 21
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  Eq. A1 

where S is the area compressed by the curve P
L
(F

L
)and the equidistribution line P

L 
=F

L
, 

while A is the area under the curve P
L
(F

L
). Therefore S is equal to 1/2 – A. Using the 

trapezoidal rule for the integral of P
L
(F

L
), area A is:  
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Since F
L

i – F
L

i –1= f
 L

i (from Eq. 5), the Gini Index can be rewritten as: 
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If all precipitation values (with repetitions) are taken (i.e., N’= N), frequency is 

replaced by f
 L

i = 1/N. Then:    
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It is easy to verify that: 
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 Eq. A5 

Finally, doubling the last term (which is negligible), a simplified version of the 

Gini Index is found: 
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Appendix B. Obtaining Equations 13 and 14 

 

The ordered n index (nor) is given by the relationship between relative cumulative 

precipitation (P
H

i ) and the time i, which can be fitted with a power law (from Eq. 10): 

 orn
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H iIP
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1·  Eq. B1 
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where I1 and nor are fitted parameters. 

According to the linear regression using least squares, the nor index can be 

obtained from: 
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The summation of lni can be rewritten using Stirling’s formula: 
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and for N>100, the divisor of the Eq. B2 can be approximated by: 
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with a less than 10% error. In particular, the bias of Eq. B4 is close to ½·(ln N)
2 

+ ln N. 

Using Eq. B3 and B4, Eq. B2 can be simplified as: 

  



N

i

i
H

Nor Pi
N

n
1

)·ln(
1

1   Eq. B5 

where αN(i) ≈ ln(N) – lni – 1 + 0.5/N ·ln(2πN) is a positive function, whilst ln P
H

i has a 

negative result because P
H

i is less than 1.  

Since P
H

N–i+1 = 1 – P
L

i for i between 1 and N – 1, when P
L

i is between 0 and 0.99, 

the logarithm can be very roughly approximated by: 
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Therefore, Eq. B5 is very roughly approximated as:  
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Note that the sum is between 1 and N – 1 because the relationship P
H

N–i+1 = 1 – P
L

i is 

only valid for this interval. 
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TABLES 

 

Table 1. Example of real and ordered MAI for a time series of eight days with 

precipitation equal to 1, 3, 2, 1, 6, 4, 2, 0 in millimetres. Note that only non-zero values 

are used. 

 

Time (days) Real MAI Ordered MAI 

i Pi /i P
H

i /i 

1 (6)/1 (6)/1 

2 (6+4)/2 (6+4)/2 

3 (6+4+2)/3 (6+4+3)/3 

4 (6+4+2+1)/4 (6+4+3+2)/4 

5 (6+4+2+1+2)/5 (6+4+3+2+2)/5 

6 (6+4+2+1+2+3)/6 (6+4+3+2+2+1)/6 

7 (6+4+2+1+2+3+1)/7 (6+4+3+2+2+1+1)/7 
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Table 2. Pearson correlation of the indices used. 

 

Comparing GI nor n TI AI –GE 

GI - 0.98 0.71 0.76 0.91 0.71 

nor 0.98 - 0.63 0.76 0.81 0.65 

n 0.71 0.63 - 0.55 0.71 0.63 

TI 0.75 0.76 0.55 - 0.61 0.92 

AI 0.91 0.81 0.71 0.61 - 0.64 

–GE 0.71 0.65 0.63 0.92 0.64 - 

Average 0.81 0.77 0.65 0.72 0.74 0.71 
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FIGURES 

 

 
 

Fig. 1. Location of the rain gauges used, taken from the Global Historical Climatology 

Network-Daily Database. The colour indicates the duration of the time series (in days). 

Point size is inversely proportional to the point density in each area. 
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Fig. 2. Example of the Lorenz curve (y(x)) and its integrating areas (A and S) regarding 

the zero line (y = 0) and the equidistribution line (y = x). The Lorenz curve y(x) is the 

polygonal line given by the empirical cumulative value of a variable according to its 

cumulative frequency. 
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Fig. 3. Comparison between the GI and three indices estimated for all the time series: a) 

CI, b) nor and c) TI. 
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Fig. 4. a) Spatial distribution of the GI. b) Latitudinal profile of the GI, according to the 

centiles 25, 50 and 75. 
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Fig. 5. a) Spatial distribution of nor. b) Latitudinal profiles of n (blue lines) and nor (red 

lines), according to the centiles 25, 50 and 75. 
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Fig. 6. a) Spatial distribution of the TI. b) Latitudinal profile of TI, according to the 

centiles 25, 50 and 75. 

  



 22 

 
 

Fig. 7. a) Pearson correlation between the fraction of wet days (WD) and the Gini Index 

(GI) for each observatory and its 100 nearest neighbours. b) Sample with significant 

positive correlation R> 0.5. c) Sample with non-significant correlation. d) Sample with 

significant negative correlation R< –0.5. 

 


