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ABSTRACT: The need for early seasonal forecasts stimulates continuous research in 

climate teleconnections. The large variability of the Mediterranean climate presents a 

greater difficulty in predicting climate anomalies. This article reviews teleconnection 

indices commonly used for the Mediterranean basin and explores possible extensions of 

one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of 

the geopotential height field at 500 hPa are analyzed using segmentation of the 

Mediterranean basin in seven spatial windows: three at eastern and four at western. That 

is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were 

calculated, and monthly and annual variability of precipitation and temperature were 

analyzed for 53 observatories from 1951 to 2015. Best versions were selected according 

to the Pearson correlation, its related p-value, and two measures of standardized error. 

The combination of the Balearic Sea and Libya/Egypt windows was the best for 

precipitation and temperature, respectively. The ULMOi showed the highest predictive 

ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the 

annual temperature throughout the Mediterranean basin. The best model built from the 

indices presented a final mean error between 15% and 25% in annual precipitation for 

most of the studied area. 
 

1. Introduction 

The weather and its variability are challenges in the development and adaptation of human 

beings in the natural environment. Forecasting the weather has presented great difficulties 

from the first attempts in the 1920s until the development of numerical modeling and 

computation (Lynch 2008). Although there have been great improvements in numerical 

weather prediction for both weather and climate over the last century, there is still great 

uncertainty, which is even greater in seasonal forecasting, a field that is somewhere 

between meteorology and climatology. Therefore, seasonal forecasting has had a less 

advanced development and is thus less reliable. 

 In global and regional seasonal forecasting, most of the teleconnection indices can 

serve as predictive tools according to their ability to explain the climatic variability of a 
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region, especially when these are influenced by ocean circulations. The study of the 

statistical correlation between two points allows us to generate and improve simulation 

models, which are capable of making forecasts in the medium and long terms with greater 

reliability. In addition to the difficulty of these simulations, the great geographical and 

meteorological complexity of the Mediterranean basin presents an added challenge 

(Lopez-Bustins et al. 2008a). Thus, it is necessary to continue researching and optimizing 

these teleconnection indices. 

Usually, teleconnection indices were defined either as anomalies of a climatic 

variable, using the difference between two geographical points, or as principal 

components (Hurrell 1995; López-Bustins et al. 2008b; Criado-Aldeanueva and Soto-

Navarro 2013). The most widely used index for the Mediterranean basin is the 

Mediterranean Oscillation index (MOi), but there are different versions, depending on the 

points of reference (Criado-Aldeanueva and Soto-Navarro 2013). Conte et al. (1989) 

defined, as the standardized MOi of 500 hPa, the difference between the geopotential 

heights of Algiers (36.4°N, 3.1°E) and Cairo (30.1°N, 31.4°E). Later versions were 

calculated based on differences in sea level pressure (Palutikof et al. 1996). For example, 

Palutikof (2003) later took the differences between Gibraltar (36.1° N, 5.3° W) and Lod 

Airport (Israel) (32.0° N, 34.5° E). Brunetti et al. (2002) designed a specific MOi version 

for the central Mediterranean using the difference between the normalized sea level 

pressure of Marseille and that of Jerusalem. This index has a good statistical correlation 

with the total rainfall and the number of wet days in Italy (Brunetti et al. 2002). 

Papadopoulos et al. (2012a, 2012b) introduced a version based on the difference between 

sea level pressure in southern France (45° N, 5° E) and the Levantine Sea (35° N, 30° E). 

Another notable index is the Western Mediterranean Oscillation index (WeMOi) (Martin-

Vide and Lopez-Bustins 2006), which is defined by sea level pressure (SLP) difference 

between Padua (Italy) and San Fernando (Spain). Other indices outside the basin are of 

interest to show the influence of other global circulations over the Mediterranean itself, 

such as the Arctic Oscillation index (AOi) (Thompson and Wallace 1998), the North 

Atlantic Oscillation index (NAOi) (Hurrell 1995; Scaife et al. 2014), the Atlantic 

Multidecadal Oscillation index (AMOi) (Schlesinger 1994; O’Reilly et al. 2016), El Niño 

Southern Oscillation index (ENSOi) (Trenberth and Stepaniak 2001), the Pacific Decadal 

Oscillation (PDOi) (Zhang et al. 1997), the Sahel Precipitation Index (SAHEL-Pi) 

(Mitchell 2016), or the Gulf Stream north wall index (GSNWi) (Taylor 2011), among 

others. 

Regarding the original idea of MOi, which was defined for the level of 500 hPa 

(Conte et al. 1989), this article explores possible extensions of this definition and contrasts 

a set of combinations based on different areas of the Mediterranean basin. The novel 

proposal of this work is the use of areas instead of isolated points, contrasting with the 

definition of the MOi. In addition, the idea of using the medium-upper level of the 

troposphere was recovered, particularly taking 500 hPa geopotential height. Thus, the 

new version suggested here is the Upper-Level Mediterranean Oscillation index 

(ULMOi). 

The purpose of the MOi extension is found in the interaction of the general 

atmospheric circulation in the northern hemisphere with that of the Mediterranean, driven 

by geographical features of irregular shapes and sizes. However, when an interaction 

occurs, it then generates a partial coupling stationary Rossby wave whose length is 

between 5,000 and 10,000 km (Wells 2011). Because of this partial coupling of the 

Rossby wave with the length of the Mediterranean Sea, diverse (often opposed) types of 

weather are generated along the Mediterranean basin. This diversity has motivated many 

researchers to use teleconnection indices to study the synoptic climatology or other 
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environmental components over the Mediterranean basin (Milošević 2016; Izquierdo et 

al. 2015; Plumb 2003; Maheras et al., 1999a,b). 

Therefore, the paper is structured around the design of the new index. In Section 2, 

we describe the study area, meteorological data, and the definition of the different 

versions of the ULMOi. In Section 3, we present results for precipitation and temperature 

variability, the variance explained by the ULMOi, and their relation with other 

teleconnection indices. Finally, in Section 4, we derive the main conclusions. 

2. Data and methodology 

2.1. Study area and data 

This study focused on specific regions of the Mediterranean basin. We specifically 

arranged seven spatial windows: three located along the Iberian Peninsula (A, B, and C) 

and the remaining four over the central and eastern Mediterranean (1–4) (Figure 1 and 

Table 1). As representative points of climate variability in the Mediterranean basin, 53 

observatories located throughout the Mediterranean basin and vicinity were selected (see 

Appendix, Table A1). 

 In particular, monthly and annual meteorological data were used from 40 

thermopluviometric series, 4 precipitation series, and 10 temperature series (see 

Appendix). The study period is 1951–2015 (65 years). The data of 42 observatories were 

provided by the European Climatic Assessment and Dataset (ECA&D, 2017), 9 

observatories from the Global Historical Climatology Network (GHCN), and 2 from the 

Global Summary of the Day (GSOD) datasets. Furthermore, indices data were provided 

by Climate Research Unit of East Anglia University (CRU 2017) for MOi; National 

Oceanic and Atmospheric Administration (NOAA 2017) for NAOi, ENSOi, AMOi and 

AOi; Joint Institute for the Study of the Atmosphere and Ocean (JISAO 2017) for PDOi 

and SAHEL-Pi; Taylor (2011) for GSNWi; and University of Barcelona (UB 2017) for 

WeMOi. 

Quality control was performed based on a daily homogeneity test (Monjo et al. 

2013). In case of inhomogeneities, the longest homogeneous part was considered. Only 

observatories with less than 25% of gaps in at least 10 years have been used in this study. 

For temperature, 42 observatory datasets were downloaded from ECA&D, 12 from the 

GHCN, and 5 from GSOD of which only 40, 9 and 2 passed the filter, respectively. 

For precipitation, 40 observatory datasets were downloaded from ECA&D and 12 from 

the GHCN of which, respectively, only 35 and 8 passed the filter. 

In addition to the observed time series, the NCEP/NCAR reanalysis was used in 

this study (see Section 2.2.2.) (e.g., Kalnay et al. 1996; Kistler et al. 2001). In particular, 

500 hPa geopotential height anomalies were calculated at monthly scale for each of the 

seven spatial windows. 

2.2. Methodology 

2.2.1. Teleconnection indices 

To analyze the atmospheric oscillations of the Mediterranean, we first considered the 

WeMOi and the MOi. These indices are calculated at a surface level according to Martin-

Vide and Lopez-Bustins (2006) and Conte et al. (1989), respectively, using as points of 

reference San Fernando (Spain) and Padua (Italy) for the WeMOi, and Algiers (Algeria) 

and Cairo (Egypt) for the MOi. Conte et al. (1989) found that the MOi implies a dipole 

pattern, especially at upper levels (e.g., 500 hPa). However, MOi was proposed by 

Palutikof (2003) using SLP because of the availability of older surface observed data. 
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The study considered other indices of external origin to the Mediterranean basin, 

such as the ENSOi, PDOi, NAOi, AOi, AMOi, SAHEL-Pi and GSNWi (Table 2). In 

order to analyze the role of the polar jet stream as an energy distributor at high and middle 

latitudes (affecting the Mediterranean basin), two measurements were taken into account: 

first, the averaged Global Jet Stream Latitude (GJSL), obtained from the maximum wind 

at 300 hPa between 45ºN and 90ºN; and second, due to geographical proximity, an 

Atlantic Jet Stream Latitude (AJSL) that was computed like GJSL, but bounded between 

4ºW and 53ºW, 45ºN to the North Pole. 

 

2.2.2. ULMOi design 

As a new development for this paper, we extended the original definition of MOi related 

to the middle and upper levels of the troposphere, namely ULMOi. In particular, the 

anomalies of geopotential height at 500 hPa (from NCEP/NCAR reanalysis) were taken 

into account. ULMOi was defined as the standardized anomaly between 500 hPa height 

of the west (windows A, B, and C) and east (windows 1 to 4) 

 

 

𝑈𝐿𝑀𝑂𝑖𝑤𝑒 =
𝐷500𝑤𝑒 − (𝐷500𝑤𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

√∑ (𝐷500𝑤𝑒 − (𝐷500𝑤𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))2𝑁

𝑖=1

N − 1

 (1)  

 

where D500we is the difference between 500 hPa height of the western (w) and eastern (e) 

windows. Note that an alternative way to define a dipolar index is to introduce an 

additional standardization for each side (western and eastern) before taking the difference, 

but in this case, it was statistically indistinguishable due to use of similar latitudes in both 

sides (Jones et al. 1997). 

To check the best selection of the western and eastern side, we considered a total of 

seven windows spatially distributed throughout the Mediterranean basin: three in the 

western basin and four in the eastern basin center (Figure 1). The idea of using areas 

instead of points is double: On the one hand, this allows an almost independence 

concerning  the spatial resolution of the used grid, and on the other hand, it allows capture 

of the synoptic variability of D500ab through a few strategic windows, related with the 

Rossby wave. In fact, a half stationary Rossby wave tends to coincide with the amplitude 

of the Mediterranean basin (Wells 2011). This pattern generates a statistically inverse 

correlation of temperature and atmospheric pressure between both sides of the 

Mediterranean basin (Conte et al., 1989). Although the Rossby wave does not always fit 

perfectly in the Mediterranean basin, a partial coupling is observed (see Sec. 3.4). 

The general segmentation of the Mediterranean basin can be explained by the 

inverse correlation found, for daily 500 hPa height anomalies, between the western and 

eastern basin (R = -0.3, p-value < 0.001). More specifically, the western basin windows 

are justified by a common pattern: the rainiest episodes in the western Mediterranean have 

a predominance of maritime flows with the presence of blocking configurations with 

areas of low pressure near the Iberian Peninsula (A), Strait of Gibraltar (B), or the Balearic 

Sea (C) (Martin-Vide et al. 2008). Meanwhile, oriental segmentation is explained by 

searching of possible Rossby wave couplings, with a mean wavelength of 5000 km or 

lower than the Mediterranean basin length (between the Iberian Peninsula and the eastern 

basin sector). Taking into account the most dipolar sides at 500hPa (estimated using the 

inverse correlation in 500hPa height), the windows 3 and 4 are arranged around the 

eastern side of the dipole. Windows 1 and 2 are arranged around the central and eastern 

sector to check if there is also a combination that shows statistical correlation.  
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These windows were considered as two control areas to contrast with the 3 and 4, which 

are expected to be the optimum windows. 

Therefore, geographical segmentation in the seven windows is due to the need to 

identify possible patterns of statistical correlation of precipitation and temperature along 

the Mediterranean. As a result, twelve versions of ULMOi, from combinations of three 

western and four eastern windows, were designed and tested. The best version was 

selected according to a detrended analysis with different statistical measures such as 

Pearson’s correlation coefficient (R), the dependence p-value (linear regression), and two 

measures of predictive ability (or skill score) according to the standardized absolute error 

(SAE) and the standardized mean squared error (SSE): 
 

 𝑆𝐴𝐸 =
∑ |𝑠𝑖 − 𝑜𝑖|

𝑁
𝑖=1

∑ |𝑜̅𝑖 − 𝑜𝑖|𝑁
𝑖=1

 (2)  

 𝑆𝑆𝐸 = √
∑ (𝑠𝑖 − 𝑜𝑖)2𝑁

𝑖=1

∑ (𝑜̅𝑖 − 𝑜𝑖)2𝑁
𝑖=1

 (3)  

 

where si is the simulation, oi is the observation, and ōi is the mean of the observations. 

The denominator of these measures represents the reference error of a prediction 

performed using the mean climatology (ōi). Note that the explained variance (VE) is 

related with the SSE as VE = 1-SSE2. 

To rank the twelve versions of ULMOi according to ability, a fractional order (FO) 

was assigned using two steps: 

1. Linear ordering: For each statistical measure, a value of 1 for the best version of 

ULMOi and a value of twelve for the worst version were assigned. Other versions were 

evaluated linearly from one to twelve according to the distance to the best and worst 

version. 

2. Final average: The above process was repeated for each month of the year and the 

arithmetic mean was calculated for each observatory. Thus, if a version obtained an 

average equal to one or twelve, respectively, it means that was the first or last of all 

statistical tests. 

Thus, if we denote as Eij to the j-statistic (SSE, SAE, 1-R2, and p-value) of the i-

version (12 in total) of ULMOi, the fractional order FOij associated with this statistic is 

 

 𝐹𝑂𝑖𝑗 = 1 + 11
𝐸𝑖𝑗 − 𝑚𝑖𝑛

1≤ 𝑖 ≤12
(𝐸𝑖𝑗)  

𝑚𝑎𝑥
1≤ 𝑖 ≤12

(𝐸𝑖𝑗) − 𝑚𝑖𝑛
1≤ 𝑖 ≤12

(𝐸𝑖𝑗)
 (4)  

 

Note that Eij are elements of a matrix of 12 rows (for the possible versions of ULMOi) 

and 4 columns (for the used statistical measures). Therefore, the fractional order FOi of 

the i-version ULMOi, considering 4 statistical measures (Eij, j = 1,…,4), is 

 FOi =
1

4
∑ FOij

4
j=1  (5)  

 

2.2.3. Analysis of the ULMOi variability 

Causes of climate variability were sought according to several versions of ULMOi. For 

this purpose, the temporal trend was eliminated in all indices, so they became stationary 

time series. Thus, prediction sensitivity was analyzed. Anomalies of temperature and 

precipitation at the 45 stations were computed as stationary on annual and monthly scales 
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for the entire study period. Finally, two optimal versions of the ULMOi were obtained to 

explain, respectively, the anomalies of temperature and precipitation. 

The possible interdependence of teleconnection indices considered in this study 

(Table 2) was analyzed by simple backward stepwise-regression based on the Akaike 

Information Criterion (AIC) (Efroymson 1960; Hastie and Pregibon 1992; Venables and 

Ripley 2002). Furthermore, the statistical significance of the Pearson correlations (R) 

between the different indices was examined. To measure the significance and the 

predictive ability of the linear models, an analysis of variance (ANOVA) (Spiegel et al. 

2007) was considered using their p-values. According to the results of the 

interdependence of the indices, an optimal combination for prediction of the temperature 

and precipitation anomalies is proposed. Nevertheless, it is remarkable that a no 

significant p-value only implies that there is not linear interdependence, but there may be 

highly complex nonlinear relationships that will not be studied in this paper. 

To analyze the possible periodicity of the quasi-oscillation ULMOi, we performed 

the spectral density (periodogram) with the fast Fourier transform (FFT) (Venables and 

Ripley 2002). Finally, an accurate analysis was carried out on the prevailing weather 

patterns and physical connections to weather types that cause climatic anomalies. 

Additionally, synoptic situations were classified according to the optimal version 

of ULMOi, from which three situations were considered at daily scale: positive phase 

(ULMOi > 0.5), negative phase (ULMOi < -0.5), and neutral phase (-0.5 < ULMOi < 

0.5). 

3. Results and discussion 

3.1. Design of ULMOi for precipitation 

For all the points analyzed, the pair of windows that presents the highest statistical and 

most significant correlation (most with p-value < 0.05) between prediction and 

observation of the annual precipitation corresponds to the C4, A4, and A3 windows 

(Figure 2). 

The places with the most significant p-value for annual precipitation, according to 

the ULMOi, are Madrid, Milan, Bilbao, A Coruña, and Toulouse (Figure 3). For winter, 

higher variance explained of all versions of ULMOi is detected in all observatories. 

Specifically, those with the best results are Lisbon, Madrid, Badajoz, Zaragoza, and 

Malaga. In spring, the lowest p-values correspond to the Bilbao, Milan, Madrid, Genoa, 

and Toulouse stations. Otherwise, the worst values for all stations are generally observed 

during the summer. However, some observatories have p-values < 0.05, as in the case of 

Toulouse, Bilbao, Lyon, and A Coruña. During autumn, stations that present the highest 

explained variance are Milan, Toulouse, Bilbao, Madrid, and Zagreb (Figure 3). 

The ULMOi version that has the highest explained variance of precipitation is the 

C4: i.e., calculated with the Balearic Sea–North Libya (Figure 1). This is coherent with 

its best fractional order (see Appendix, Table A2). From the Pearson correlation 

coefficient calculated for this, the anomaly precipitation sign for every observatory in the 

Mediterranean basin was identified in relation to the ULMOi (Figure 4). In the northwest 

basin, relations with widely spread negative signs are observed, with a Pearson correlation 

of up to 0.5 being the most statistically significant. On the other hand, the eastern 

Mediterranean has no statistically significant relationships, although they are negative in 

Greece and positive in winter months in some isolated points such as Latakia, Jerusalem, 

or Mersa-Matruh. A similar spatial pattern is found throughout the year, interrupted only 

in summer months, with neutral or positive values in the east (Figure 4). Note that the 
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Jerusalem and Cairo stations are not shown in July and August, and June and July 

respectively, because no precipitation was recorded during the analyzed period. 

This observed spatial distribution of correlation coefficients is caused by 

atmospheric blockings (which generate high pressure over the Iberian Peninsula) over the 

Mediterranean basin in the positive phase of the ULMOi, producing negative vertical 

velocities that inhibit the largely favorable upward movement to generate precipitation 

(Holton J. 1972). However, the more eastward in the basin, the weaker this atmospheric 

blocking becomes. Because of this, we find negative values or slightly positive ones 

without statistical significance in these regions. This pattern is consistent with patterns 

found by other authors (Maheras et al., 1999a,b, Tornos 2013). Nevertheless, we also find 

negative values with high statistical significance in the southeast or neutral values in the 

westernmost regions. This heterogeneity over the southeastern basin with a given value 

of ULMOi seems to be due mainly to geographical causes, wind regimes which favor 

precipitation, windward/leeward side to humid/dry air masses, orographic barriers, or 

other factors (González-Hidalgo et al. 2009, Cortesi et al. 2012). 

The ability level to predict precipitation obtained with error measurements is similar 

for SAE and SSE. Note that all values of SSE are lower than unit (Figure 5). That is, all 

predictions commit errors lower than reference prediction based on the climatic average. 

According to these error measurements, some cases with high-explained variance appear 

again in the central and eastern swathes, such as Palermo, Kalamata, Sirte, and Latakia. 

We observe this to a lesser extent in the western basin in the Spanish cities of Madrid, 

Palma, and Malaga. 

3.2. Design of ULMOi for temperature 

For all temperature stations, the pair of windows that has a highest statistical correlation 

(and lowest p-values) between prediction and observation for annual temperature 

corresponds to C3, followed by C4, and, in third place, C2 and A3 which are statistically 

equivalent (Figure 6). Similar results were found according to the fractional order (see 

Appendix, Table A3). 

As for the annual temperature, our research shows statistically significant values 

(p-value < 0.05) for most versions of ULMOi, especially for the following observatories: 

Siwa, Mersa-Matruh, Lebanese Tripoli, Agedabia, and Madrid (Figure 7). In fact, for the 

annual estimation, there is no single version of ULMOi that stands out from the others 

(see Appendix). During the winter, most stations have better results than in the annual 

values, especially in eastern basin stations such as Lebanese Tripoli, Mersa-Matruh, Siwa, 

Sirte, and Agedabia. Palermo is the station that presents the worst statistics for winter 

temperature. In spring, the Badajoz, Lisbon, Madrid, Zaragoza, Lebanese Tripoli, and 

Barcelona stations have a better statistical fit. In summer, some stations have a very high 

statistical correlation between values predicted by ULMOi and observations; among these 

are Madrid, Zaragoza, Badajoz, Barcelona, Lisbon, and Perpignan. Meanwhile, autumn 

shows very significant p-values for most stations in windows A and 3 (the Iberian 

Peninsula and the eastern Mediterranean) (Figure 7). 

Once identified, for the windows which have higher explained variance for 

temperature (C3: Balearic Sea–Levantine Sea), Pearson’s correlation for all the basin 

observatories was analyzed and outstanding results were obtained (Figure 8). First, the 

western Mediterranean, formed by the Iberian Peninsula, Morocco, and Algeria, along 

with Croatia and central regions such as northern Italy, have positive correlations, most 

of which are statistically significant (Pearson correlation up to 0.6). The inverse 

correlation occurs in the central and northeastern Mediterranean (the Levant, Turkey, and 
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Libya). In the case of Greece, we see negative values during most of the year, while they 

are significantly positive at the end of spring. We found statistically significant negative 

values in Jerusalem, Heraklion, and Sirte, among other observatories. A strong correlation 

dipole between eastern and western basin is observed during the spring and autumn 

seasons, but is weaker or disappears in winter and summer. A positive ULMOi means 

higher geopotential in the western Mediterranean. This result implies that geopotential is 

more likely to have positive 500/1000 hPa thickness and positive temperature anomalies 

by hydrostatic equilibrium. This pattern is similar to the one found by Maheras et al., 

(1999a,b). 

As with the prediction of precipitation, the ability to predict temperature is adequate 

according to the SAE and SSE measurements. Similarly, all values are lower than the 

SSE unit (Figure 9) and, therefore, errors will be lower than a prediction based on the 

reference climate average. According to these error measures, there are stations with high-

explained variance (SSE between 0.6 and 0.8) in the central area and the Levant of the 

Mediterranean: Thessaloniki, Lamia, Izmir, Siwa, Mersa-Matruh, and others. Some 

observatories in the extreme west, such as Palma, Ceuta, and Madrid, also present 

acceptable errors, improving prediction by up to 10%. 

 

 

3.3. Comparison with other indices 

The comparison with other indices was analyzed for the best versions of the 

ULMOi. According to the p-values of that comparison, the simulation of annual rainfall 

is better with ULMOi followed by MOi (Figure 10, right). For annual temperature, AMOi 

gets the best result, nearly matched by ULMOi (Figure 10, left) with p-value < 0.05 for 

more than half the stations (note that maximum p-values of ULMOi are lower than the 

maximum of AMOi). 

There is no statistically significant correlation between ULMOi and AMOi and, as 

both are good predictors for temperature, their combination shows a good performance in 

the multiple regression ULMOi ranks as the second-best predictor of annual temperature 

when it is combined with the other one (AMOi). The final error of the annual temperature 

prediction with ULMOi combined with AMOi is between 0.3 °C and 0.6 ºC, 

corresponding to an SSE between 0.7 and 0.9. 

Although MOi and ULMOi are good individual predictors for precipitation, there 

is a very significant correlation between them (p-value < 0.001, R = 0.5), which causes 

its predictive ability to be shared among them in multiple regression. Hence, the final 

error for annual precipitation is 15%–25%, which corresponds to an SSE of 0.8 to 0.9. 

 ENSOi and GSNWi obtained the worst results separately (simple regression) for 

the explanation of the variance of annual anomalies of temperature and precipitation 

respectively) (Figure 10). Meanwhile, NAO and GSNW obtained the worst results 

together (multiple regression, for temperature and precipitation respectively). 

For simple regression ENSOi has predictive capability for temperature in only two 

of the cases analyzed (Nicosia and Zaragoza); GSNWi in six cases for precipitation 

(Dubrovnik, Bilbao, Rome, Malaga, Cagliari, and Madrid). In multiple regression, the 

NAOi is also capable of explaining the variance of temperature in one case (Finike) and 

for GSNWi in precipitation is good in three cases (Bilbao, Malaga, and Rome). The poor 

results of the NAOi and ENSOi found for the Mediterranean basin contrasts with their 

high ability for seasonal forecasting in America and Western Europe (Scaife et al. 2014). 

 

3.4. ULMO variability and causes 
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3.4.1. Variability 

The ULMOi showed a high temporal variability and a high level of noise. According to 

the FFT analysis, several ULMOi periods were distinguished. These periods range from 

three months to eight years, with twelve months being the most frequent due to the 

seasonal nature of the Rossby wave (White 2001, Hitchman and Huesmann 2007). Also, 

one secondary cycle (5 ± 1 months) was observed. Similarly, three multiyear cycles of 

2.5 ± 0.5, 7 ± 1, and 25 ± 9 years were detected. Note that many oscillations of 2–3 years 

were more frequent in the decades between 1990 and 2000, while eight-year oscillations 

were more typical in the decades between 1950 and 1970 (Figure 11a). Regarding to the 

trend analysis, ULMOi has no significant trend (p-value > 0.05). 

The phases of the ULMOi has been represented by three cases of the anomaly of 

the geopotential height at 500 hPa. For the positive phases a slightly positive of 

0.5<ULMOi<1.5 deviation (Fig. 11 c), and an extreme deviation ULMO>3 (Fig. 11 d) 

are shown. Symmetrically for the negative phases, a slightly negative -1.5<ULMO<-0.5 

(Fig. 11 e) deviation and an extreme deviation ULMO< -3 (Fig. 11 f) are shown. The 

synoptic analysis of the phases are: 

1. Neutral phase: It is characterized by zonality of geopotential height 

isolines along the basin, being slightly lower in the east than in the west. Note that 

Figure 11b shows the average of the geopotential at 500 hPa height, which is 

practically identical to the neutral phase. The average is interesting because it shows 

the role of the surface friction on stationary wave generation, a phenomenon not 

exclusive to the Mediterranean basin in the northern hemisphere. 

2. Positive phase (Figure 11c and 11d): It is characterized by a ridge in the 

Iberian Peninsula. The ridge represents high geopotential values in the west of the 

Mediterranean basin and low values of geopotential in the east sector (Libya, Greece, 

and Turkey). This scenario leads to episodes of stability and positive temperature 

anomalies in the western Mediterranean and negative and unstable anomalies in the 

east. 

3. Negative phase (Fig. 11e and 11f): In this phase, the lowest values of 

geopotential are found in the Iberian Peninsula due to the position of a trough over it; 

thus, it creates unstable weather and negative thermal anomalies. By contrast, a ridge 

over the eastern Mediterranean is observed, causing above-normal temperatures with 

dry and stable weather. 

It is necessary to distinguish between ULMO as a spatial wave and as a low-frequency 

variability pattern at long term (multi-annual oscillation) due to variations in the 

frequency of appearance of the spatial wave. The spatial wave is the phenomenon which 

frequency, intensity, and duration vary in a multi-annual scale. This variability is expected 

to be captured by the ULMOi, in a similar way that ENSOi, PDOi or AMOi captures the 

variability of sea surface temperature (SST) anomalies. 

 

3.4.2. Causes of the spatial wave 

The ULMO spatial wave is related to the stationary Rossby wave. The dipole shown in 

Figure 11 between the Iberian Peninsula and eastern Mediterranean results in a length 

wave of 4000-5000 km (approximately), which creates opposite types of weather between 

both edges. This partial coupling to the topographic basin is consistent with the length of 

dipoles found by other authors (Wallace et al. 1981) and also with the role that continental 

friction has over jet stream waves (Charney et al. 1949) and the influence that the Azores 

high has on the Mediterranean basin. On the other hand, for the variability of ULMOi, a 
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similar wavelength during positive and negative phases was considered according to one 

standard deviation (see Figure 11c and 11e). 

 

 

3.4.3. Causes of the temporal variability 

The ULMOi multi-annual periodicity allows us to relate it with other indices and therefore 

we can determinate the causes of its variability and energy flows which affect it. 

However, these relations are highly nonlinear and complex, so their variability is linked 

to a combination of these multiple indices. ULMOi has a high positive correlation with 

AOi, MOi, GSNWi and PDOi (<0.05 in all cases), and also a negative correlation with 

AJSL, but not with GJSL. Meanwhile, GJSL has a high positive correlation with most 

relevant SST indices (i.e., ENSOi, PDOi) and also with the WeMOi. On the other hand, 

AJSL has a significant negative correlation with ULMOi, GSNWi, and ENSOi for large 

periods (Fig. 12). 

According to the AIC obtained from the backward stepwise-regression, ULMOi 

depends on AOi, AJSL, PDOi and AMOi (Fig. 12). This dependence could explain the 

origin of the ULMO multi-annual periodicities (2.5 ± 0.5, 7 ± 1, and 25 ± 9 years, Sec. 

3.4.1), which cannot be caused by internal variability of the atmosphere. These 

periodicities are probably due to nonlinear connections with the energy flow variability 

from the Pacific and Atlantic oceans. To check this hypothesis, we analyzed the 

connection nodes of PDO with GJSL/AJSL, AMO with AJSL, and AJSL with ULMO. 

According to the correlation analysis (Fig. 12), the multi-decadal energy flow variability 

is probably transferred to the ULMO according to two schemes: 

 

[PDO / ENSO] → [GJSL → AJSL ↔  AO] → ULMO 

[AMO / GSNW] → [ AJSL ↔ NAO] → ULMO 
 

In fact, PDO significantly influences the GJSL (p-value < 0.001) and the AJSL (p-

value < 0.05). On the other hand, AJSL is correlated with the ULMOi (p-values < 0.05). 

These relations are consistent with the teleconnection Pacific-Mediterranean found by 

other authors (López-Parages and Rodríguez-Fonseca 2012; Muñoz-Díaz and Rodrigo 

2005). Regarding the Atlantic variability modes, AMOi and GSNWi seem to have a 

significant influence on the ULMOi through the AJSL (p-values < 0.05). 

On the multiyear time scale, the sudden variations of the oceanic-atmosphere 

coupling, such as ENSO, can be transmitted by the jet stream (GJSL and AJSL), and also 

modulated by other atmospheric patterns with great influence on the Mediterranean as the 

AO (p-value <0.005) and NAO (p-value < 0.01), in agreement with Fedorov (2007). 

Therefore, an important dependence of the ULMOi on the climate variability modulated 

by the ocean-atmosphere coupling is observed through the variations of the jet stream 

over the Mediterranean, especially from the PDOi and the AMOi, modulated by ENSOi 

and GSNWi. 

According to this and the spatial distribution of the correlation (Fig. 8), we can 

corroborate that the Rossby wave is coupled with the Mediterranean basin. In future 

works, this coupling will allow us to predict temperature and rainfall anomalies in the 

Mediterranean basin. 

 

3.5. Future works 

These results are preliminary; therefore, it is recommended to continue the analysis of the 

main properties of ULMOi. Following the example of other authors, it is advisable to 

http://tropa.fis.ucm.es/members/7
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examine possible changes in the frequency of each of the main modes (Ribera et al. 2000; 

López-Bustins et al. 2008b). 

In fact, this new version of MOi opens up a possible line of research on climate 

variability in the Mediterranean basin. This research may help to differentiate between 

natural and anthropogenic contributions to climate change. For example, a significant 

portion of possible changes predicted for the Mediterranean are due to effects of natural 

variables such as seasonal NAO, according to several authors (Lopez-Bustins et al. 2008a, 

Krichak et al. 2014). 

However, although ENSOi influence on the temperature of the oceans is globally 

important, it is unnoticed in the Mediterranean Sea (Alexander et al. 2002). The AOi and 

WeMOi may also have significantly influenced Mediterranean climate change in recent 

decades (Martin-Vide and Lopez-Bustins, 2006). Therefore, it will be necessary to 

analyze the possible effects of ULMOi on inter-annual climatic anomalies in future works 

and, subsequently, to analyze the effects on trends observed beyond natural variability. 

 

4. Conclusions 

First, teleconnection indices available for the Mediterranean were reported. Next, the 

need to expand the definition of MOi was determined by using an index represented by 

areas instead of observatories or specific points. To improve the predictability of seasonal 

anomalies in the Mediterranean, this work focuses on developing an index based on the 

differences of geopotential height at 500 hPa, which is referred to as ULMOi. For rainfall 

predictability, the new index has reported higher confidence than the MOi, with a p-value 

< 0.05 against p-value > 0.1, obtained by rest indices, for more than half of all stations. 

Furthermore, for temperature, ULMOi has the second rank behind AMOi, with p-values 

below 0.05 for more than half of all stations. 

The physical link between ULMOi and surface temperature anomaly is positive for 

the western Mediterranean basin. That is, positive ULMOi implies a higher 500 hPa/1000 

hPa thickness over the western side with higher temperature; otherwise, it is negative for 

the eastern Mediterranean basin. This result confirms the partial coupling of the Rossby 

wave over the Mediterranean basin. As for the relationship between ULMOi and 

precipitation, it is negative in nearly the entire basin, except for some stations on the 

eastern edge. High geopotential levels around west side inhibit upward movement (which 

is required for precipitation), and means stable and sunny weather in these regions. This 

condition is primarily due to an atmospheric blocking generated in the western 

Mediterranean, where westerlies are reduced and storm tracks along the eastern 

Mediterranean are favored. 

ULMOi and AMOi show the greatest ability to explain the variance of annual 

temperature, adequately simulating it for more than half of the observatories (with a p-

value < 0.1). For annual precipitation, the best individual predictors are ULMOi and MOi. 

In contrast, ENSOi and NAOi have the lowest predictive ability for the Mediterranean 

basin, although they are important for seasonal forecasting in America and Western 

Europe. The low dependence between MOi and ULMOi explains that their combination 

optimizes the prediction of precipitation anomalies for most of the stations, with an error 

between 15% and 25% (i.e., 75% of stations show an error less than 25%). 

Like the other indices, ULMOi presents a double application. First, it can contribute 

to the improvement of seasonal forecast. Second, it allows for the identification of a part 

of the climatic variability. Future enhancements to this work would consist of making a 

deeper analysis of the ULMOi frequency patterns and their possible relationship with the 

natural contribution to the climate change. 
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Appendix 

Geographical characteristics for all considered stations are shown in Table A1. For both 

annual precipitation and temperature anomalies, a fractional order of the twelve versions 

of the ULMOi (Tables A2 and A3) was estimated following the methodology previously 

described. 
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Tables 

Table 1. Coordinates of the combined windows selected for testing several versions of 

ULMOi. 

   

 

MAXIMUM 

LATITUDE 

MINIMUM 

LATITUDE 

MAXIMUM 

LONGITUDE 

MINIMUM 

LONGITUDE 

WINDOW A  44 36 3.31  –10.48  

WINDOW B  38 34 –0.30  –7.50  

WINDOW C  42.5 36.5 4.4 –2.20  

WINDOW 1  45.2 34.4 19 9 

WINDOW 2  43 35  31 18 

WINDOW 3  38 28 37.5 27 

WINDOW 4  32.5 29 25.5 14 
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Table 2. Indices and their variables considered in this study (where SST is sea surface 

temperature, P represents sea level pressure, R is rainfall, and WS is wind speed at 300 

hPa). 
 

Index Start End 
Used 

variable 
Used region Reference 

ENSOi 1870 2015 SST 

El Niño 3.4 

(170ºW to 120º 

W-EQ) 

NOAA (2017) 

NAOi 1950 2015 P 
Ponta Delgada–

Reykjavik 
NOAA (2017) 

AOi 1950 2015 P 
Atlantic 20ºN to 

North Pole 
NOAA (2017) 

AMOi 1870 2015 SST 
Atlantic 0º–60ºN 

and 7.5ºW–7.5ºE 
NOAA (2017) 

MOi 1948 2015 P Algiers–Cairo CRU (2017) 

WeMOi 1821 2013 P 
Padua–San 

Fernando 
UB (2017) 

PDOi 1854 2016 SST Pacific 20ºN JISAO (2017) 

SAHEL-Pi 1901 2016 R 

Africa 8º to 

20ºN – 20ºW to 

10ºE 

Mitchell (2016) 

GSNWi 1966 2010 SST 
Atlantic 55º to 

75ºW - 35ºN 
Taylor (2011) 

GJSL 1871 2015 WS 
45ºN to North 

Pole 
Section 2.2.1 

AJSL 1871 2015 WS 

Atlantic 4º to 

53ºW – 45ºN to 

North Pole 

Section 2.2.1 
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Table A1. Geographical characteristics coordinates of the 53 weather stations (sorted by 

longitude). MASL means meters above sea level. The type can be thermometric (T), 

pluviometric (P), or thermopluviometric (TP). 
 

Number Name Lat Lon MASL  Country Type  Source 

1 Lisbon 38.44 -9.08 114 Portugal TP ECA&D 

2 A Coruña 43.35 -8.4 97 Spain TP ECA&D 

3 Badajoz 38.87 -6.97 185 Spain TP ECA&D 

4 Kenitra 34.25 -6.58 13 Morocco T ECA&D 

5 Ceuta 35.88 -5.32 11 Spain TP ECA&D 

6 Malaga 36.72 -4.41 16 Spain TP ECA&D 

7 Madrid 40.41 -3.7 609 Spain TP ECA&D 

8 Melilla 35.29 -2.94 47 Spain TP ECA&D 

9 Bilbao 43.25 -2.93 42 Spain TP ECA&D 

10 Murcia 37.98 -1.13 5 Spain TP ECA&D 

11 Zaragoza 41.65 -0.88 263 Spain TP ECA&D 

12 Valencia 39.47 -0.37 69 Spain TP ECA&D 

13 Toulouse 43.59 1.44 152 France TP ECA&D 

14 Barcelona 41.39 2.17 4 Spain TP ECA&D 

15 Palma 39.56 2.64 4 Spain TP ECA&D 

16 Perpignan 42.68 2.89 43 France T ECA&D 

17 Algiers 36.76 3.05 25 Algeria TP ECA&D 

18 Lyon 45.75 4.84 200 France P ECA&D 

19 Annaba 36.82 7.81 17 Algeria TP GHCN 

20 Genoa 44.4 8.94 2 Italy TP ECA&D 

21 Cagliari 39.24 9.11 4 Italy P ECA&D 

22 Milan 45.46 9.18 107 Italy TP ECA&D 

23 Mt Cimone 44.19 10.7 2165 Italy TP ECA&D 

24 Rome 41.89 12.48 18 Italy TP ECA&D 

25 Aviano 46.06 12.58 159 Italy TP ECA&D 

26 Tripoli 32.87 13.22 11 Libya TP GHCN 

27 Palermo 38.11 13.35 21 Italy TP ECA&D 

28 Catania 37.5 15.08 11 Italy TP ECA&D 

29 Zadar 44.11 15.23 82 Croatia TP ECA&D 

30 Zagreb 45.79 15.97 106 Croatia TP ECA&D 

31 Sirte 31.2 16.58 7 Libya TP GHCN 

32 Dubrovnik 42.56 18.24 157 Croatia T ECA&D 

33 Sarajevo 43.85 18.41 511 BiH TP ECA&D 

34 Tirana 41.32 19.81 105 Albania TP ECA&D 

35 Agedabia 30.72 20.17 2 Libya TP GHCN 

36 Benghazi 32.08 20.27 5 Libya TP GHCN 

37 Kalamata 37.03 22.11 6 Greece TP ECA&D 

38 Lamia 38.89 22.43 87 Greece T ECA&D 

39 Thessaloniki 40.63 22.94 8 Greece TP ECA&D 

40 Heraklion 35.33 25.14 37 Greece T ECA&D 

41 Siwa 29.2 25.32 -14 Egypt TP GHCN 
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42 Samos 37.75 26.97 2 Greece T ECA&D 

43 Izmir 38.43 27.17 13 Turkey T GSOD 

44 Mersa Matruh 31.33 27.22 6 Egypt TP GHCN 

45 Istanbul 40.98 28.82 48 Turkey T GSOD 

46 Finike 36.29 30.14 3 Turkey T ECA&D 

47 Antalya 36.9 30.8 55 Turkey TP GHCN 

48 Cairo 30.03 31.24 64 Egypt P ECA&D 

49 Nicosia 35.17 33.26 91 Cyprus T ECA&D 

50 Jerusalem 31.76 35.21 780 Israel-Palestine TP ECA&D 

51 Latakia 35.52 35.79 7 Syria TP ECA&D 

52 Tripoli-Leb 34.45 35.82 20 Lebanon T GHCN 

53 Sivas 39.74 37.01 1285 Turkey T ECA&D 

 
Table A2. Fractional order (FO) of the twelve versions of the ULMOi for each 

observatory. From the simulation of the annual precipitation anomaly. 

 

  A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 

A CORUÑA 9.7 12 8.2 3.4 8.2 3 1 4.6 2.1 1.8 5.7 2.2 

AGEDABIA 6.5 9.9 4.1 9.6 9.5 11.4 10 9.5 11.6 3.7 1 5.7 

ALGIERS 8.8 12 4.2 2.2 3.2 1.3 3.4 3.5 4.2 4.8 5.3 4.6 

ANNABA 4.8 1.9 11 10.9 8.6 8.5 9.8 10.8 6.9 9.1 10.2 5.4 

ANTALYA 6.5 4.9 3.7 5 1 6 10.7 7.1 12 8.3 4.6 9.2 

AVIANO 9.5 8.8 7.7 7.4 12 7.3 4.7 8.1 5.2 1 3.9 1.3 

BADAJOZ 8.1 12 8.1 5.2 7.3 5.7 1 2.5 2.4 2.3 4 3.2 

BARCELONA 3.3 12 1.6 3.7 9.5 5.6 5.8 9.2 7.4 1.1 4.4 3.2 

BENGHAZI 5.7 2.3 9.5 10.8 11.1 8.5 11.1 11.1 10 9.4 5.1 11.4 

BILBAO 11.9 8.7 6.1 5.5 10.3 1 5.4 8.9 2.7 5.2 9.5 1.5 

CAGLIARI 12 10.4 6.4 8.5 5.2 5.9 6.4 1.2 5.4 6.3 1.4 4.1 

CAIRO 4.3 12 2.6 2 5.8 4.5 1.5 1.2 5 1 3.3 3.2 

CATANIA 11.3 10.2 7 9.7 5.8 5.3 7.7 1.9 4.8 7.2 1 3.1 

CEUTA 8.8 12 7.7 4.7 6.2 4.5 1.7 1.1 2.1 1.6 1.6 2.4 

DUBROVNIK 8.3 5.1 11.8 8.3 10.4 5.7 3.5 5.1 1.2 4.7 6.7 1.4 

GENOA 4.5 12 2.1 4.2 10 4.9 5.7 10.6 7.3 2.3 7.6 3.4 

HERAKLION 7.8 8.9 4.3 7.2 4.4 9 9.8 6.7 12 5.3 1 6.9 

JERUSALEM 11.9 10.2 12 5.3 6.7 4.2 1.3 1.8 1 5.1 5.6 4 

KALAMATA 9.3 11.9 11.2 7.9 11.2 11 7.5 10.3 11.3 1 2.9 6.4 

LATAKIA 10.6 12 10.4 5.7 6.7 6.5 4.2 2.3 6.8 1.5 1.5 3.2 

LISBON 8.5 12 8.7 6.3 8.3 6.6 1.8 3.5 2.9 1 2.9 1.9 

LYON 5.1 12 3.6 1.9 7.8 2.7 5.3 9.3 6.5 1.7 6.3 2.8 

MADRID 6.9 12 6.3 3.1 4.7 4.3 1.4 1 3.5 1.9 1.7 3.4 

MALAGA 10.9 11.4 12 9 8.2 9.7 5.6 2.3 6.5 4.6 1 5.6 

MELILLA 7.1 2.6 4.3 7.8 1.1 8.2 10.8 4.4 12 10.6 4.5 11.4 

MERSA-M 5.9 4.3 4.8 11.1 9.2 12 11.2 9.3 12 5.2 1.1 7.4 

MILAN 5.7 12 3.4 2.2 6.1 2.3 2.1 5 3.5 1 4.1 1.7 

MT CIMONE 10.8 10 6.9 5.2 3.8 3.8 7.8 6.3 7.5 8.2 6.4 7.1 

MURCIA 6.7 1 6.9 9.2 4.6 10 11.9 9.2 11.4 11.6 8.4 11.8 
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PALERMO 1 5.9 5.9 7 8.9 10.4 11.8 11.8 11.1 9.3 11 12 

PALMA 12 10.2 11.5 6.4 8 1 4.4 4.4 1.1 7.1 7.9 2.8 

ROME 7.4 5 9.6 10.9 10.4 6.8 4 5.6 1.2 7.2 9 3.6 

SARAJEVO 5.5 1 6.3 12 9.1 10.4 5.5 7 4.2 5.6 7.2 3.7 

SIRTE 11.7 10.3 11.3 11.2 12 10.1 7.9 8.4 6.9 2.8 1 1.8 

SIWA 8.2 7.3 11.5 8.7 7.5 1.1 11 10.6 8.6 7 2.9 11.2 

THESSALONIKI 7.2 8.2 8.7 11.6 11.1 8 8.4 4.9 3 8.6 3.4 1 

TIRANA 4.8 1 6.5 11.2 8.3 12 7.8 9.7 6 9.4 11.5 6.7 

TOULOUSE 8 12 5.7 4.1 7.1 3.6 3.8 6.4 4 1.2 4.2 1.1 

TRIPOLI 12 8.3 10.8 9.3 1 6.6 10.4 4 8.6 10.2 11.6 11.9 

VALENCIA 3.2 1.2 4 6.3 3.4 8.9 11.4 8.8 11.7 10.7 7.6 12 

ZADAR 5.2 1 9.1 11.4 9.9 7.8 7.4 9.6 4.6 9.2 12 6.1 

ZAGREB 8.3 1.6 11.5 8.1 12 5.1 3.5 7.1 1 5.5 9 2.6 

ZARAGOZA 2.9 4.7 1 5.7 4.6 7.5 9.7 8.4 12 6.4 4.3 8.4 

AVERAGE 7,6 8 7,2 7,1 7,4 6,5 6,4 6,4 6,3 5,3 5,3 5,2 
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Table A3. As Table A2, but for the annual temperature anomaly. 

 

 A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 

A CORUÑA 9 12 4.3 2.4 4.9 1 6.1 7.5 5.7 5.8 7.8 5 

AGEDABIA 9.8 12 8.5 3.6 6.1 2.7 1 2.5 1.4 1.8 3.2 1.3 

ALGIERS 11.7 10.6 11.1 8.3 9 3.9 5 5.1 2.2 5 5.3 1 

ANNABA 6 7.8 11.8 9.8 8.6 3.4 5.8 3.4 1 8.3 7 2.8 

ANTALYA 11.8 9.6 9.9 3.1 6.8 1.4 1.7 4.2 1.5 3.3 6.1 2.3 

AVIANO 9.5 11.7 7.7 3.8 8 3.4 1.4 4.6 2.3 1.7 5.2 1.6 

BADAJOZ 6.5 5.5 1.1 3.3 1.3 3.1 10.4 9.3 11 8.8 7 8.7 

BARCELONA 12 9.7 8.5 6 7.8 3.9 3.5 4.5 2.2 3.4 4.6 1 

BENGHAZI 9 11.9 9 3.6 8.1 4.9 2.3 5.9 3.8 1 4.4 2.4 

BILBAO 12 10 8.8 6.6 8.1 2.9 4.8 6 2.4 4.4 5.6 1 

CAGLIARI 1 2.8 7.5 10.9 11.1 9.7 8.5 7.7 2.9 12 11.9 7.4 

CATANIA 4.3 3 5.9 11.3 9.7 11.3 3.9 5.2 1.4 7 8.7 3.5 

CEUTA 12 9 5 6 8.5 2.1 5.7 6.3 3.3 4.9 5.3 1.8 

DUBROVNIK 2.8 2.4 2.7 9.6 8.6 12 3.9 2.8 1.9 6.6 6.2 4 

FINIKE 6.5 1 8.1 11 10.3 9.1 7.4 9.9 5.9 11.6 8.9 10.7 

HERAKLION 9.8 3 10.8 4.9 10.4 3.2 2.8 8.3 2.4 5.6 10.4 4.3 

ISTANBUL 7.9 12 5.8 1.5 4.5 1 3.7 5.5 4.3 5.2 7 5.1 

IZMIR 9 12 9.5 3.1 7.9 4.1 1 3.7 3 2.1 4.6 3.3 

JERUSALEM 8.1 5.8 8.3 10 11.5 8.6 2.6 4.2 1 7.9 9.3 5.9 

KALAMATA 1.5 3.4 8.6 5.2 6.6 11.9 8.4 9.3 10.3 3 2.3 11.5 

KENITRA 4.1 5.2 1 7.7 6.2 7.7 11.1 11.2 11.5 10.3 9.6 10.6 

LAMIA 1 10 4.9 12 8.8 11.1 8.4 2.3 8 11.1 7.6 10.3 

LATAKIA 3.6 2.4 3.9 10.5 9.3 10.3 2.7 2.3 1 9.5 9.5 8.2 

LISBON 5.9 10.1 3.2 2.5 4.6 1 7.7 9.2 8 5.4 6.7 4.9 

MADRID 6.4 12 1.4 1.3 3.8 1.5 4.9 6.3 6.1 1.5 2.8 2.4 

MALAGA 8.7 2.5 7.2 9.7 7.7 9.4 8.9 9.3 9.5 8.4 5.2 7.5 

MELILLA 11.1 11.5 5.3 4.7 3.8 1 6.9 6.7 5.6 5.8 5 2.9 

MERSA-M 8.9 12 7 2 5.8 1.1 1.3 3.9 1.9 2.9 5.6 2.7 

MILAN 11.4 9.2 11 5.9 10.9 5 2.3 6.5 1.9 3.9 7.2 2.5 

MT CIMONE 5.3 1.1 8.5 11.7 11.4 7.8 4.1 6.3 1.1 6.7 9.2 3.4 

MURCIA 11.1 11.9 8 6.9 7.6 4.3 5.9 6 4.1 3.7 3.8 1 

NICOSIA 6.7 2.4 6.9 9.2 11.9 6.4 2.6 6.1 1.5 9.8 12 7.7 

PALERMO 3.2 1 6.9 9.4 8 10.9 11.3 10.9 10.4 11.3 10.9 9.7 

PALMA 11.9 9.8 8.5 5.5 7 2.3 2.6 3.7 1 4.2 5.5 1.6 

PERPIGNAN 12 11.1 8.1 5.5 7 2.8 3.3 4.2 1.8 3.8 4.7 1 

ROME 1.3 1.6 2.2 7.6 6.9 9.5 11.4 11.5 9.8 10.6 10.3 11.3 

SAMOS 5.2 1 6.1 8.5 11.3 4.3 9.9 11.7 8.4 8 4.3 10.9 

SARAJEVO 2.3 6.2 1 2.6 3.9 4.7 9.2 10.4 11.6 9.4 10.9 12 

SIRTE 6 11.7 3.5 1.5 2.5 3.7 7.1 6.6 9 6.4 6.5 7.5 

SIVAS 6.6 3.4 8.7 9 10.6 6.5 4.2 5.4 1.3 11.2 11.8 9.2 

SIWA 11.9 11.9 8.5 4.4 6.2 3.7 1.5 2.2 1.1 2.9 3.6 1.8 

THESSALONIKI 3.7 6.5 6.8 1 4.6 7.1 5.7 8.4 12 3.6 6.3 10.3 
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TIRANA 1.4 7.9 2.1 2.4 7 5.8 11 11.5 12 11.3 11 11.8 

TOULOUSE 12 8.4 10.8 6.6 8.2 3.5 3.4 4 1 4.8 6.4 1.8 

TRIPOLI 12 11.3 9.9 5.5 7.5 3.6 2 2.1 1.4 6.7 8 5.4 

TRIPOLI-LEB 6.7 12 4.5 1.2 4.2 1.4 1.2 2.7 2.3 1.2 2.8 1.4 

VALENCIA 12 10.2 7.5 5 1.3 2.3 5.4 1.5 4.1 5.2 1.5 3.1 

ZADAR 2.6 1 3.8 10.2 8.8 11.9 5.2 5.2 3.5 9 9.4 6.6 

ZAGREB 2.3 1 4 9.1 7.4 12 9.3 9.8 7.5 10.8 11.7 7.9 

ZARAGOZA 11.2 12 6.2 4.9 4.3 2.5 4.2 3 3 3.4 2 1 

AVERAGE 7,2 7,4 6,6 6,2 7,5 5,4 5,4 6,5 4,8 6,3 7 5,5 

 

 

 

Figures & Figure Captions 

 

Figure 1. Distribution of windows and meteorological observatories (points enumerated 

in Table A1) along the Mediterranean basin used in the study. 
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Figure 2. Pearson correlation p-value of monthly precipitation simulated and observed for 

each combination of windows. The lines of the box correspond to the first, second, and 

third quartiles. The dashed lines represent 1.5 times the interquartile range. The dashed 

red line indicates the threshold for p-value = 0.05. 

 

Figure 3. Pearson correlation p-value obtained comparing seasonal simulation from the 

studied indices and the observed anomaly in rainfall. The lines of the box correspond to 

the first, second, and third quartiles, while the dashed lines represent 1.5 times the 

interquartile range. The dashed red line indicates the threshold for p-value = 0.05. 
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Figure 4. Spatial distribution of the Pearson correlation obtained comparing simulated 

and observed precipitation for each month of the year, from January to December, from 

left to right, and from top to bottom. The bold edges of the circles indicate cases with 

statistical significance for correlation according to several p-values (0. 01, 0.05, and 0.1). 
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Figure 5. Standardized mean squared error (SSE) of the precipitation prediction using the 

ULMOi C4 calculated for each month of the year and each observatory. The lines of the 

box correspond to the first, second, and third quartiles, while the dashed lines represent 

1.5 times the interquartile range. The dashed red line indicates the threshold for SSE = 1. 

 

Figure 6. Same as Figure 2, but for monthly temperature. 
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Figure 7. Same as Figure 3, but comparing monthly simulation for temperature. 
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Figure 8. Same as Figure 4, but comparing monthly simulation from ULMOi C3 and the 

observed anomaly in temperature. 
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Figure 9. Same as Figure 5, but for temperature and ULMOi C3. 

 

Figure 10. Pearson correlation p-value for each index and all stations, with respect to the 

annual temperature anomaly (left) and precipitation (right). Lines of boxplot correspond 

to the first, second, and third quartiles, while the dashed lines represent 1.5 times the 

interquartile range. The dashed red line indicates the threshold for p-value = 0.1. 
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Figure 11. Evolution of monthly ULMOi C4 normalized with standard deviation (light 

red) and 12 months moving average (dark red) (11a). ULMO-C4 phases: average (11b), 

positive 0.5<ULMOi<1.5 (11c) and ULMOi>3 (11d), negative -1.5<ULMO<-0.5 (11e) 

and ULMOi<-3 (11f). 
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Figure 12. Pearson correlation coefficients (top right) and scatter plots (bottom left) 

between the analyzed indices, including the two measures of the jet stream latitude 

variability (GJSL and AJSL) shown in green. Trend lines are shown only for cases with 

significant (<0.05) positive (blue) and negative (red) correlation. 

 

 


